
New investigations into
the structure of locally sparse graphs

Ross J. Kang∗

Radboud University Nijmegen

LIMDA Seminar Barcelona (via zoom) 6/2020

∗With Alon, Cambie, Cames van Batenburg, Davies, Esperet, de Joannis de Verclos, Pirot,
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Structure of triangle-free graphs

Asymptotically, what global graph structure forms if
no edge is induced in any neighbourhood?

i.e. “local versus global”

Distinguished origins:

• Mantel (1907), Turán (1941)

• Ramsey (1930), Erdős & Szekeres (1935)

• Zykov (1949), Ungar & “Blanche Descartes” (1954)

Elegant, modern challenges!
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Probabilistic method

If a random object has desired property with positive probability,
then there exists at least one object with that property



Hard-core model†

†More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion.
Picture credit: Wikipedia/Grap-wh





List colouring

Given a graph G , imagine enemies to you properly colouring it

• that give lists of allowed colours per vertex

• but must allow at least ` colours per vertex

What is least ` for which you can always defeat them?

Called list chromatic number or choosability ch(G) of G
(Necessarily χ(G) ≤ ch(G) ≤ ∆(G) + 1)
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Lists make it “harder”

ch is not bounded by any function of chromatic number χ

Theorem (Erdős, Rubin, Taylor 1980)

ch(Kd,d) ∼ log2 d (and ch(Kd+1) = d + 1)

More closely related to density

Theorem (Saxton & Thomason 2015, cf. Alon 2000)

ch(G) & log2 δ for any G of minimum degree δ

Still not completely well understood

Conjecture (Alon & Krivelevich 1998)

ch(G) . log2 ∆ for any bipartite G of maximum degree ∆

To date(!): ch(G) .
∆

log ∆
(Molloy 2019, cf. Alon, Cambie, Kang 2020+)
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Separation makes it “easier”?

What if adjacent lists are all disjoint?

Call the corresponding least ` separation choosability chsep

Theorem (Kratochv́ıl, Tuza, Voigt 1998)

chsep(Kd+1) ∼
√
d

Theorem (Füredi, Kostochka, Kumbhat 2014)

chsep(Kd,d) ∼ log2 d

Theorem (Esperet, Kang, Thomassé 2019)

chsep(G) = Ω(log δ) for any bipartite G of minimum degree δ

Question: Does chsep grow in δ?

Problem: Almost-disjointness of lists is not monotone under edge-addition!
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Theorem (Füredi, Kostochka, Kumbhat 2014)

chsep(Kd,d) ∼ log2 d

Theorem (Esperet, Kang, Thomassé 2019)
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Ramsey-type question/solution?
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Easier(?): Does every graph of high minimum degree contain either

• a large clique or

• a bipartite induced subgraph of large minimum degree?

BID(G) is largest minimum degree of any bipartite induced subgraph of G
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Bipartite induced density

BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)

BID(G) = Ω(log δ) for any triangle-free G of minimum degree δ

• Without triangle-free, trivially false due to cliques

• Without induced, trivially true with δ/2 rather than Ω(log δ)

• If true, it is sharp up to constant factor due to random graph

• True with “semi-bipartite” instead of bipartite

• BID(G) ≥ 2 is presence of an even hole (Radovanović and Vušković ’13)

We do not even understand the least δ forcing BID(G) ≥ 3!

Theorem (Kwan, Letzter, Sudakov, Tran 2020‡)

BID(G) = Ω

(
log δ

log log δ

)
for any triangle-free G of minimum degree δ

‡

A very recent simplification by Glock 2020+
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We do not even understand the least δ forcing BID(G) ≥ 3!

Theorem (Kwan, Letzter, Sudakov, Tran 2020‡)

BID(G) = Ω

(
log δ

log log δ

)
for any triangle-free G of minimum degree δ

‡

A very recent simplification by Glock 2020+



Bipartite induced density

BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)
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We do not even understand the least δ forcing BID(G) ≥ 3!

Theorem (Kwan, Letzter, Sudakov, Tran 2020‡)

BID(G) = Ω

(
log δ

log log δ

)
for any triangle-free G of minimum degree δ

‡

A very recent simplification by Glock 2020+



Bipartite induced density

BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)
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We do not even understand the least δ forcing BID(G) ≥ 3!

Theorem (Kwan, Letzter, Sudakov, Tran 2020‡)

BID(G) = Ω

(
log δ

log log δ

)
for any triangle-free G of minimum degree δ

‡

A very recent simplification by Glock 2020+



Bipartite induced density

BID(G) is largest minimum degree of any bipartite induced subgraph of G

Conjecture (Esperet, Kang, Thomassé 2019)
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BID “between” independent set and colouring

α(G) is size of largest independent set of G
BID(G) is largest minimum degree of any bipartite induced subgraph of G

α(G) ≥ BID(G)

Suppose G has minimum degree δ and a proper χ-colouring

Each of ∼ 1
2
χ2 pairs of colour classes induces a bipartite graph

≥ 1
2
nδ edges are distributed across these

By pigeonhole, one has & nδ/χ2 edges
So it has minimum degree Ω(δ/χ) if the colouring is balanced. . .

Theorem (Esperet, Kang, Thomassé 2019)

BID(G) ≥ δ

2χ
for any G with minimum degree δ and chromatic number χ
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A sequence with independent set and colouring

BID(G)
↓

ω(G) ≤ max
∅6=H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

In general, all can be strict §

We focus on triangle-free. . .

§

On strictness of second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+), and
Dvǒrák, Ossona de Mendez, Wu (2018+); nice open question in the triangle-free case
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Dvǒrák, Ossona de Mendez, Wu (2018+)

; nice open question in the triangle-free case



A sequence with independent set and colouring

BID(G)
↓

ω(G) ≤ max
∅6=H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

In general, all can be strict §

We focus on triangle-free. . .

§On strictness of second, see Blumenthal, Lidický, Martin, Norin, Pfender, Volec (2018+), and
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Off-diagonal Ramsey numbers¶

¶Picture credit: Soifer 2009



Off-diagonal Ramsey numbers

∗

i.e. Independence number of triangle-free graphs

R(3, k) : largest n such that there is red/blue-edge-coloured Kn−1

with no red triangle and no blue Kk

R(3, k) : minimum size of triangle-free G guaranteeing α(G) ≥ k

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

R(3, k) .
k2

log k

α(G) &
n log ∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Bohman & Keevash 2013+, Fiz Pontiveros, Griffiths, Morris
2020, cf. Kim 1995)

R(3, k) &
k2

4 log k
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Fractional chromatic number

α = 4

χf ≥ n/α = 5/2

fractional vertex-colouring : allow “fractions” of independent sets

fractional chromatic number χf : least “amount” needed

χf (G) ≤ k if there is probability distribution over I (G) such that for random I

P(v ∈ I) ≥ 1/k for every vertex v

linearity
=⇒ E |I| ≥ n/k · · ·
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Chromatic number of triangle-free graphs

ω(G) ≤ max
∅6=H⊆G

|H|
α(H)

≤ χf (G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)
n

α(G)
.

∆

log ∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+)

χf (G) .
∆

log ∆
for any triangle-free G of maximum degree ∆

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019)

ch(G) .
∆

log ∆
for any triangle-free G of maximum degree ∆

Why? Simple, conceptual, versatile, and more. . .
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Hard-core model

A probability distribution over I (G) the set of independent sets of G

Hard-core model on G at fugacity λ > 0 is probability distribution over I (G)
such that random I satisfies for all S ∈ I (G)

P(I = S) =
λ|S|

ZG (λ)
, where ZG (λ) =

∑
S∈I (G)

λ|S|
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Spatial Markov property

For S ∈ I (G), call u occupied if u ∈ S and call u uncovered if N(u) ∩ S = ∅

Take I from hard-core model on G at fugacity λ and let X ⊆ V (G)

Reveal I \ X and let UX := X \ N(I \ X ) (the externally uncovered part)

Then I ∩ X is hard-core on G [UX ] at fugacity λ
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Local occupancy method

Distribution I on I (G) has local (a, b)-occupancy if for every vertex v

a · P(v ∈ I) + b · E|N(v) ∩ I| ≥ 1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity λ and maximum degree ∆

B If there is probability distribution I on I (G) with local (a, b)-occupancy,
then χf (G) ≤ a + b ·∆

; analysis to minimise a + b ·∆ ; χf (G) .
∆

log ∆
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Originally used by Molloy & Reed (2002) to prove fractional Reed’s Conjecture

Idea: greedily add weight/colour to independent sets according to probability
distribution induced by I on vertices not yet completely coloured, and iterate

One can think of it as “evening out” the distribution
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Local occupancy method

Distribution I on I (G) has local (a, b)-occupancy if for every vertex v

a · P(v ∈ I) + b · E|N(v) ∩ I| ≥ 1

A Hard-core model on any triangle-free G has local (a, b)-occupancy,
for specific a, b depending on fugacity λ and maximum degree ∆

B If there is probability distribution I on I (G) with local (a, b)-occupancy,
then χf (G) ≤ a + b ·∆

In A, Fact 1 and Fact 2 imply

a · P(v ∈ I) + b · E|N(v) ∩ I| ≥ bλ(log((ea/b) log(1 + λ)))

(1 + λ) log(1 + λ)

and so from B it suffices to show
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C If hard-core model has local (a, b)-occupancy (+ mild conditions),
then ch(G) ≤ a · O(log ∆) + (1 + ε)b ·∆

=⇒ optimisation for α(G) or χf (G) also yields bounds for χ(G) and ch(G)

C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019)
combined with properties of the hard-core model

C’, an algorithmic version of C (under additional conditions), merges the
hard-core model into framework of Achlioptas, Iliopoulous, Sinclair (2019)

∗∗i.e. satisfying some structural sparsity condition for every neighbourhood subgraph
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Graphs with colourable neighbourhoods

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly,
Nelson, Postle 2018+)

ch(G) = O

(
log(r + 1)

∆

log ∆

)
for any G of maximum degree ∆

in which every neighbourhood is r -colourable

Theorem (Davies, Kang, Pirot, Sereni 2020+)

ch(G) . K(r) · ∆

log ∆
for any G of maximum degree ∆

in which every neighbourhood is r -colourable,
where K(1) = 1 and K(r) ∼ log r as r →∞

NB: r = 1 corresponds to Molloy’s and r = ∆ + 1 corresponds to trivial bound
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Ck-free graphs

Theorem (Kim 1995)

ch(G) .
∆

log ∆
for any G of girth 5 and maximum degree ∆

Theorem (Davies, Kang, Pirot, Sereni 2020+)

ch(G) . max

{
∆

log(∆/(k log ∆))
,O(k log ∆)

}
for any Ck -free G of maximum degree ∆

NB: k = ∆o(1) includes Kim’s and Molloy’s
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Graphs with sparse neighbourhoods

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas,
Iliopoulos, Sinclair 2019)
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√
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∆
2

)
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Verclos, Kang, Pirot 2018+)
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Barriers

“89 years of R(3, k)”

Theorem (Shearer 1983)

α(G) &
n log ∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Theorem (Davies, Jenssen, Perkins, Roberts 2018)
Z ′G (1)

ZG (1)
&

n log ∆

∆
for any n-vertex triangle-free G of maximum degree ∆

Asymptotically sharp for the random ∆-regular graphs Gn,∆!

Conjecture (Davies, Jenssen, Perkins, Roberts 2018)

α(G) & 2 · Z
′
G (1)

ZG (1)
for any triangle-free G of minimum degree δ

Question (Karp 1976)

Is there a polynomial-time algorithm that with high probability outputs an
independent set
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Structure of triangle-free graphs

Theorem (Shearer 1983)
n

α(G)
.

√
2n

log n
for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

χf (G) .

√
2n

log n
for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot)

ch(G) = O

(√
n

log n

)
for any n-vertex triangle-free G

Known: χf (G) .

√
4n

log n
, χ(G) .

√
8n

log n
, ch(G) = O(

√
n)

NB: Conjecture on “fractional colouring with local demands” implies the first
(Kelly & Postle 2018+)
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Structure of triangle-free graphs

Conjecture (Esperet, Kang, Thomassé 2019)

BID(G) = Ω(log δ) for any triangle-free G of minimum degree δ

Theorem (Esperet, Kang, Thomassé 2019)

BID(G) ≥ δ

2χf (G)
for any G with minimum degree δ

Conjecture (Harris 2019)

χf (G) = O

(
δ∗

log δ∗

)
for any triangle-free G with degeneracy δ∗

NB: False for χ(G) (Alon, Krivelevich, Sudakov 1999)

Question (Blumenthal, Lidický, Martin, Norin, Pfender, Volec 2018+)

χf (G) = O(ρ) for any triangle-free G where ρ = max
∅6=H⊆G

|H|
α(H)

?

NB: False without triangle-free (BLMNPV 2018+)
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Structure of triangle-free graphs

Conjecture (Alon & Krivelevich 1998)

ch(G) . log2 ∆ for any bipartite G of maximum degree ∆

Recent: one side log ∆, other side ∼ ∆/ log ∆ (Alon, Cambie, Kang 2020+)
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Gràcies!


