New investigations into
 the structure of locally sparse graphs

Ross J. Kang*

LIMDA Seminar Barcelona (via zoom) 6/2020

[^0]
Structure of Triangle-Free graphs

Asymptotically, what global graph structure forms if no edge is induced in any neighbourhood?

Structure of Triangle-Free graphs

Asymptotically, what global graph structure forms if no edge is induced in any neighbourhood?
i.e. "local versus global"

Distinguished origins:

- Mantel (1907), Turán (1941)
- Ramsey (1930), Erdős \& Szekeres (1935)
- Zykov (1949), Ungar \& "Blanche Descartes" (1954)

Structure of Triangle-Free graphs

Asymptotically, what global graph structure forms if no edge is induced in any neighbourhood?
i.e. "local versus global"

Distinguished origins:

- Mantel (1907), Turán (1941)
- Ramsey (1930), Erdős \& Szekeres (1935)
- Zykov (1949), Ungar \& "Blanche Descartes" (1954)

Elegant, modern challenges!

Probabilistic method

If a random object has desired property with positive probability, then there exists at least one object with that property

[^1]
List colouring

Given a graph G, imagine enemies to you properly colouring it

- that give lists of allowed colours per vertex
- but must allow at least ℓ colours per vertex

List colouring

Given a graph G, imagine enemies to you properly colouring it

- that give lists of allowed colours per vertex
- but must allow at least ℓ colours per vertex

What is least ℓ for which you can always defeat them?

List colouring

Given a graph G, imagine enemies to you properly colouring it

- that give lists of allowed colours per vertex
- but must allow at least ℓ colours per vertex

What is least ℓ for which you can always defeat them?

Called list chromatic number or choosability $\mathrm{ch}(G)$ of G (Necessarily $\chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1)$

Lists make it "HARDER"

ch is not bounded by any function of chromatic number χ
Theorem (Erdős, Rubin, Taylor 1980)
$\operatorname{ch}\left(K_{d, d}\right) \sim \log _{2} d\left(\right.$ and $\left.\operatorname{ch}\left(K_{d+1}\right)=d+1\right)$

Lists make it "HARDER"

ch is not bounded by any function of chromatic number χ
Theorem (Erdős, Rubin, Taylor 1980)
$\mathrm{ch}\left(K_{d, d}\right) \sim \log _{2} d$ (and $\left.\operatorname{ch}\left(K_{d+1}\right)=d+1\right)$
More closely related to density
Theorem (Saxton \& Thomason 2015, cf. Alon 2000) $\mathrm{ch}(G) \gtrsim \log _{2} \delta$ for any G of minimum degree δ

Lists make it "Harder"

ch is not bounded by any function of chromatic number χ
Theorem (Erdős, Rubin, Taylor 1980)
$\operatorname{ch}\left(K_{d, d}\right) \sim \log _{2} d\left(\right.$ and $\left.\operatorname{ch}\left(K_{d+1}\right)=d+1\right)$
More closely related to density
Theorem (Saxton \& Thomason 2015, cf. Alon 2000) $\operatorname{ch}(G) \gtrsim \log _{2} \delta$ for any G of minimum degree δ

Still not completely well understood
Conjecture (Alon \& Krivelevich 1998) $\operatorname{ch}(G) \lesssim \log _{2} \Delta$ for any bipartite G of maximum degree Δ

Lists make it "HARDER"

ch is not bounded by any function of chromatic number χ
Theorem (Erdős, Rubin, Taylor 1980)
$\operatorname{ch}\left(K_{d, d}\right) \sim \log _{2} d\left(\right.$ and $\left.\operatorname{ch}\left(K_{d+1}\right)=d+1\right)$
More closely related to density
Theorem (Saxton \& Thomason 2015, cf. Alon 2000)
$\operatorname{ch}(G) \gtrsim \log _{2} \delta$ for any G of minimum degree δ
Still not completely well understood
Conjecture (Alon \& Krivelevich 1998)
$\operatorname{ch}(G) \lesssim \log _{2} \Delta$ for any bipartite G of maximum degree Δ
To date(!): $\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ (Molloy 2019, cf. Alon, Cambie, Kang 2020+)

楊

What if adjacent lists are all disjoint?

楊

What if adjacent lists are all almost disjoint?

楊

What if adjacent lists are all almost disjoint, so 1 common colour?

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ℓ separation choosability $\mathrm{ch}_{\text {sep }}$

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ℓ separation choosability $\mathrm{ch}_{\text {sep }}$
Theorem (Kratochvíl, Tuza, Voigt 1998)
$\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$

號

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ℓ separation choosability $\mathrm{ch}_{\text {sep }}$
Theorem (Kratochvíl, Tuza, Voigt 1998)
$\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$
Theorem (Füredi, Kostochka, Kumbhat 2014) $c h_{\text {sep }}\left(K_{d, d}\right) \sim \log _{2} d$

號

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ℓ separation choosability $\mathrm{ch}_{\text {sep }}$
Theorem (Kratochvíl, Tuza, Voigt 1998)
$\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$
Theorem (Füredi, Kostochka, Kumbhat 2014)
$c h_{\text {sep }}\left(K_{d, d}\right) \sim \log _{2} d$
Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\text {sep }}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ

號

What if adjacent lists are all almost disjoint, so 1 common colour?
Call the corresponding least ℓ separation choosability $\mathrm{ch}_{\text {sep }}$
Theorem (Kratochvíl, Tuza, Voigt 1998)
$\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$
Theorem (Füredi, Kostochka, Kumbhat 2014)
$c h_{\text {sep }}\left(K_{d, d}\right) \sim \log _{2} d$
Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\text {sep }}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ
Question: Does ch $_{\text {sep }}$ grow in δ ?
Problem: Almost-disjointness of lists is not monotone under edge-addition!

Theorem (Kratochvíl, Tuza, Voigt 1998) $\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\text {sep }}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ
Question: Does ch sep grow in δ ?
Problem: Almost-disjointness of lists is not monotone under edge-addition!

Theorem (Kratochvíl, Tuza, Voigt 1998) $\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\text {sep }}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ
Question: Does ch sep grow in δ ?
Problem: Almost-disjointness of lists is not monotone under edge-addition!
Easier(?): Does every graph of high minimum degree contain either

- a large clique or
- a bipartite induced subgraph of large minimum degree?

行品

Theorem (Kratochvíl, Tuza, Voigt 1998) $\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\text {sep }}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ
Question: Does ch sep grow in δ ?
Problem: Almost-disjointness of lists is not monotone under edge-addition!
Easier(?): Does every graph of high minimum degree contain either

- a large clique or
\rightarrow KTV 1998
- a bipartite induced subgraph of large minimum degree?
\rightarrow EKT 2019

范

Theorem (Kratochvíl, Tuza, Voigt 1998) $\mathrm{ch}_{\text {sep }}\left(K_{d+1}\right) \sim \sqrt{d}$

Theorem (Esperet, Kang, Thomassé 2019)
$\mathrm{ch}_{\mathrm{sep}}(G)=\Omega(\log \delta)$ for any bipartite G of minimum degree δ
Question: Does ch sep grow in δ ?
Problem: Almost-disjointness of lists is not monotone under edge-addition!
Easier(?): Does every graph of high minimum degree contain either

- a large clique or
\rightarrow KTV 1998
- a bipartite induced subgraph of large minimum degree? \rightarrow EKT 2019
$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
Conjecture (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $\operatorname{BID}(G) \geq 2$ is presence of an even hole (Radovanović and Vušković '13)

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $\operatorname{BID}(G) \geq 2$ is presence of an even hole (Radovanović and Vušković '13)

We do not even understand the least δ forcing $\operatorname{BID}(G) \geq 3$!

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
Conjecture (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $\operatorname{BID}(G) \geq 2$ is presence of an even hole (Radovanović and Vušković '13)

We do not even understand the least δ forcing $\operatorname{BID}(G) \geq 3$!
Theorem (Kwan, Letzter, Sudakov, Tran 2020 ${ }^{\ddagger}$)
$\operatorname{BID}(G)=\Omega\left(\frac{\log \delta}{\log \log \delta}\right)$ for any triangle-free G of minimum degree δ

Bipartite induced density

$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
Conjecture (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

- Without triangle-free, trivially false due to cliques
- Without induced, trivially true with $\delta / 2$ rather than $\Omega(\log \delta)$
- If true, it is sharp up to constant factor due to random graph
- True with "semi-bipartite" instead of bipartite
- $\operatorname{BID}(G) \geq 2$ is presence of an even hole (Radovanović and Vušković '13)

We do not even understand the least δ forcing $\operatorname{BID}(G) \geq 3$!
Theorem (Kwan, Letzter, Sudakov, Tran 2020 ${ }^{\ddagger}$)
$\operatorname{BID}(G)=\Omega\left(\frac{\log \delta}{\log \log \delta}\right)$ for any triangle-free G of minimum degree δ

[^2]
BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G
$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G

BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G
$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
$\alpha(G) \geq \operatorname{BID}(G)$

BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G $\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
$\alpha(G) \geq \operatorname{BID}(G)$
Suppose G has minimum degree δ and a proper χ-colouring

BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G $\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
$\alpha(G) \geq \operatorname{BID}(G)$
Suppose G has minimum degree δ and a proper χ-colouring
Each of $\sim \frac{1}{2} \chi^{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{1}{2} n \delta$ edges are distributed across these
By pigeonhole, one has $\gtrsim n \delta / \chi^{2}$ edges

BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G
$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
$\alpha(G) \geq \operatorname{BID}(G)$
Suppose G has minimum degree δ and a proper χ-colouring
Each of $\sim \frac{1}{2} \chi^{2}$ pairs of colour classes induces a bipartite graph $\geq \frac{1}{2} n \delta$ edges are distributed across these
By pigeonhole, one has $\gtrsim n \delta / \chi^{2}$ edges
So it has minimum degree $\Omega(\delta / \chi)$ if the colouring is balanced. . .

BID "BETWEEN" INDEPENDENT SET AND COLOURING

$\alpha(G)$ is size of largest independent set of G
$\operatorname{BID}(G)$ is largest minimum degree of any bipartite induced subgraph of G
$\alpha(G) \geq \operatorname{BID}(G)$
Suppose G has minimum degree δ and a proper χ-colouring
Each of $\sim \frac{1}{2} \chi^{2}$ pairs of colour classes induces a bipartite graph
$\geq \frac{1}{2} n \delta$ edges are distributed across these
By pigeonhole, one has $\gtrsim n \delta / \chi^{2}$ edges
So it has minimum degree $\Omega(\delta / \chi)$ if the colouring is balanced. . .
Theorem (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G) \geq \frac{\delta}{2 \chi}$ for any G with minimum degree δ and chromatic number χ

A SEQUENCE WITH INDEPENDENT SET AND COLOURING

$$
\begin{gathered}
\operatorname{BID}(G) \\
\quad \downarrow \\
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
\end{gathered}
$$

A SEQUENCE WITH INDEPENDENT SET AND COLOURING

$$
\begin{gathered}
\operatorname{BID}(G) \\
\downarrow \\
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
\end{gathered}
$$

In general, all can be strict ${ }^{\S}$

A SEQUENCE WITH INDEPENDENT SET AND COLOURING

$$
\begin{gathered}
\operatorname{BID}(G) \\
\downarrow \\
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
\end{gathered}
$$

In general, all can be strict ${ }^{\S}$
We focus on triangle-free. .

Off-diagonal Ramsey numbers ${ }^{〔}$

[^3]
Off-DIAGonal Ramsey numbers

$R(3, k)$: largest n such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_{k}

Off-Diagonal Ramsey numbers
 I.E. IndEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

$R(3, k)$: largest n such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_{k}
$R(3, k)$: minimum size of triangle-free G guaranteeing $\alpha(G) \geq k$

Off-DIAGonal Ramsey numbers
 I.E. IndEPENDENCE NUMBER OF TRIANGLE-FREE GRAPHS

$R(3, k)$: largest n such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_{k}
$R(3, k)$: minimum size of triangle-free G guaranteeing $\alpha(G) \geq k$
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$
R(3, k) \lesssim \frac{k^{2}}{\log k}
$$

Off-Diagonal Ramsey numbers

I.E. Independence number of triangle-free graphs
$R(3, k)$: largest n such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_{k}
$R(3, k)$: minimum size of triangle-free G guaranteeing $\alpha(G) \geq k$
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$
R(3, k) \lesssim \frac{k^{2}}{\log k}
$$

Theorem (Bohman \& Keevash 2013+, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$
R(3, k) \gtrsim \frac{k^{2}}{4 \log k}
$$

Off-Diagonal Ramsey numbers

I.E. Independence number of triangle-free graphs
$R(3, k)$: largest n such that there is red/blue-edge-coloured K_{n-1} with no red triangle and no blue K_{k}
$R(3, k)$: minimum size of triangle-free G guaranteeing $\alpha(G) \geq k$
Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1)

$$
R(3, k) \lesssim \frac{k^{2}}{\log k}
$$

$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Theorem (Bohman \& Keevash 2013+, Fiz Pontiveros, Griffiths, Morris 2020, cf. Kim 1995)

$$
R(3, k) \gtrsim \frac{k^{2}}{4 \log k}
$$

Probabilistic method

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

$$
\text { Proof with } \because \cdot \sigma
$$

Probabilistic method

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

$$
\text { Proof with } \because \cdot 0
$$

Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random I has

$$
\mathbb{E} \left\lvert\, \| \gtrsim \frac{n \log \Delta}{\Delta} ? \widetilde{ }\right.
$$

Probabilistic method

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

$$
\text { Proof with } \because \cdot 0
$$

Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random I has

$$
\mathbb{E} \left\lvert\, \| \gtrsim \frac{n \log \Delta}{\Delta} ? \widetilde{ }\right.
$$

Probabilistic method

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

$$
\text { Proof with } \% \cdot \|
$$

Good probability distribution over the set $\mathscr{I}(G)$ of independent sets of G for proving that random I has

$$
\mathbb{E} \left\lvert\, \| \gtrsim \frac{n \log \Delta}{\Delta} ?\right.
$$

[^4]
FRACTIONAL CHROMATIC NUMBER

$$
\begin{aligned}
& \alpha=4 \\
& \chi_{f} \geq n / \alpha=5 / 2
\end{aligned}
$$

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

FRACTIONAL CHROMATIC NUMBER

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

FRACTIONAL CHROMATIC NUMBER

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

FRACTIONAL CHROMATIC NUMBER

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

FRACTIONAL CHROMATIC NUMBER

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

FRACTIONAL CHROMATIC NUMBER

$$
\begin{aligned}
& \alpha=4, \chi_{f}=5 / 2 \\
& \chi_{f} \geq n / \alpha=5 / 2
\end{aligned}
$$

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed

Fractional chromatic number

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed
$\chi_{f}(G) \leq k$ if there is probability distribution over $\mathscr{I}(G)$ such that for random I

$$
\mathbb{P}(v \in I) \geq 1 / k \quad \text { for every vertex } v
$$

Fractional chromatic number

fractional vertex-colouring : allow "fractions" of independent sets fractional chromatic number χ_{f} : least "amount" needed
$\chi_{f}(G) \leq k$ if there is probability distribution over $\mathscr{I}(G)$ such that for random I

$$
\begin{aligned}
\mathbb{P}(v \in I) \geq 1 / k & \text { for every vertex } v \\
& \stackrel{\text { linearity }}{\Longrightarrow} \mathbb{E}|I| \geq n / k
\end{aligned}
$$

Chromatic number of TRIANGLE-FREE GRAPHS

$$
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\frac{n}{\alpha(G)} \lesssim \frac{\Delta}{\log \Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Chromatic number of TRIANGLE-FREE GRAPHS

$$
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\frac{n}{\alpha(G)} \lesssim \frac{\Delta}{\log \Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) $\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

$$
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\frac{n}{\alpha(G)} \lesssim \frac{\Delta}{\log \Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_{f}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) $\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

$$
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\frac{n}{\alpha(G)} \lesssim \frac{\Delta}{\log \Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_{f}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) $\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Why?

Chromatic number of TRIANGLE-FREE GRAPHS

$$
\omega(G) \leq \max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)} \leq \chi_{f}(G) \leq \chi(G) \leq \operatorname{ch}(G) \leq \Delta(G)+1
$$

Theorem (Shearer 1983, cf. Ajtai, Komlós, Szemerédi 1980/1) $\frac{n}{\alpha(G)} \lesssim \frac{\Delta}{\log \Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Theorem (Davies, de Joannis de Verclos, Kang, Pirot 2018+) $\chi_{f}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Theorem (Molloy 2019, cf. Johansson 1996+, cf. also Bernshteyn 2019) $\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any triangle-free G of maximum degree Δ

Why?
Simple, conceptual, versatile, and more...

HARD-CORE MODEL

A probability distribution over $\mathscr{I}(G)$ the set of independent sets of G

HARD-CORE MODEL

A probability distribution over $\mathscr{I}(G)$ the set of independent sets of G

Hard-core model on G at fugacity $\lambda>0$ is probability distribution over $\mathscr{I}(G)$ such that random I satisfies for all $S \in \mathscr{I}(G)$

$$
\mathbb{P}(I=S)=\frac{\lambda^{|S|}}{Z_{G}(\lambda)}, \quad \text { where } Z_{G}(\lambda)=\sum_{S \in \mathscr{I}(G)} \lambda^{|S|}
$$

Spatial Markov property

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S=\emptyset$

Spatial Markov property

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S=\emptyset$

Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$

Spatial Markov property

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S=\emptyset$

Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$
Reveal $I \backslash X$ and let $U_{X}:=X \backslash N(I \backslash X)$ (the externally uncovered part)

Spatial Markov property

For $S \in \mathscr{I}(G)$, call u occupied if $u \in S$ and call u uncovered if $N(u) \cap S=\emptyset$

Take I from hard-core model on G at fugacity λ and let $X \subseteq V(G)$
Reveal $I \backslash X$ and let $\mathrm{U}_{X}:=X \backslash N(I \backslash X)$ (the externally uncovered part)
Then $I \cap X$ is hard-core on $G\left[U_{X}\right]$ at fugacity λ

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$
\leadsto analysis to minimise $a+b \cdot \Delta \leadsto$

$$
\chi_{f}(G) \lesssim \frac{\Delta}{\log \Delta}
$$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

Originally used by Molloy \& Reed (2002) to prove fractional Reed's Conjecture

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

Originally used by Molloy \& Reed (2002) to prove fractional Reed's Conjecture

Idea: greedily add weight/colour to independent sets according to probability distribution induced by I on vertices not yet completely coloured, and iterate

One can think of it as "evening out" the distribution

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$ (needs triangle-free!)

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in I \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\mathbb{P}(v \in I)
$$

$$
\mathbb{E} \mid N(v) \cap \|
$$

$$
a \cdot \mathbb{P}(v \in \mathbb{I})+b \cdot \mathbb{E} \mid N(v) \cap \mathbb{I}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\mathbb{P}(v \in I)=\mathbb{P}(v \in I \text { and } v \text { uncovered })
$$

$$
\mathbb{E}|N(v) \cap I|
$$

$$
a \cdot \mathbb{P}(v \in \mathbb{I})+b \cdot \mathbb{E}|N(v) \cap \mathbb{I}|
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in I \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\mathbb{P}(v \in \mathbb{I})=\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered })
$$

$$
\begin{aligned}
& \mathbb{E}|N(v) \cap \mathrm{I}| \\
& a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}|
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathrm{I})=\mathbb{P}(v \in \mathrm{I} \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
& \\
& \mathbb{E}|N(v) \cap \mathrm{I}| \\
& a \cdot \mathbb{E}(1+\lambda)^{-\mathrm{J}} \\
& a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E} \mid N(v) \cap \mathrm{I}
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathrm{I})=\mathbb{P}(v \in \mathrm{I} \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
& \quad=\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J} \\
& \mathbb{E}|N(v) \cap \mathrm{I}| \\
& a \cdot \mathbb{P}(v \in \mathbb{I})+b \cdot \mathbb{E}|N(v) \cap \mathbb{I}|
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
\mathbb{P}(v \in \mathbb{I}) & =\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
& =\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J}
\end{aligned}
$$

$$
\mathbb{E}|N(v) \cap| \mid \stackrel{\text { linearity }}{=} \mathbb{P}(u \in \mathrm{I} \mid u \text { uncovered }) \cdot \mathbb{E} \mathrm{J}
$$

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}|
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
\mathbb{P}(v \in \mathbb{I}) & =\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
& =\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J}
\end{aligned}
$$

$\mathbb{E}|N(v) \cap \|| \stackrel{\text { linearity }}{=} \mathbb{P}(u \in \mathrm{I} \mid u$ uncovered $) \cdot \mathbb{E} \mathrm{J} \stackrel{\text { Fact }}{=} \frac{\lambda}{1+\lambda} \mathbb{E} \mathrm{J}$
$a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}|$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathbb{I})=\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
&=\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E J}} \\
& \mathbb{E}|N(v) \cap \mathbf{I}| \stackrel{\text { linearity }}{=} \mathbb{P}\left(u \in|\mid u \text { uncovered }) \cdot \mathbb{E} J \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E J}\right. \\
& \Longrightarrow \boldsymbol{a} \cdot \mathbb{P}(v \in \mathbb{I})+\boldsymbol{b} \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq \frac{\lambda}{1+\lambda}\left(\boldsymbol{a} \cdot(1+\lambda)^{-\mathbb{E} J}+\boldsymbol{b} \cdot \mathbb{E} \mathbf{J}\right)
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathbb{I})=\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
&=\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J} \\
& \mathbb{E}|N(v) \cap \mathbf{I}| \stackrel{\text { linearity }}{=} \mathbb{P}\left(u \in|\mid u \text { uncovered }) \cdot \mathbb{E} J \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E J}\right. \\
& \Longrightarrow a \cdot \mathbb{P}(v \in \mathbb{I})+b \cdot \mathbb{E}|N(v) \cap \mathbb{I}| \geq \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\mathbb{E} J}+b \cdot \mathbb{E} \mathbf{J}\right) \\
& \geq \min _{\iota \in \mathbb{R}^{+}} \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\iota}+b \cdot \iota\right)
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathbf{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathbf{I})=\mathbb{P}(v \in I \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
&=\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J} \\
& \mathbb{E}|N(v) \cap \mathbf{I}| \stackrel{\text { linearity }}{=} \mathbb{P}(u \in I \mid u \text { uncovered }) \cdot \mathbb{E} J \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E} \mathrm{J} \\
& \Longrightarrow a \cdot \mathbb{P}(v \in \mathbb{I})+b \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\mathbb{E} J}+b \cdot \mathbb{E} \mathbf{J}\right) \\
& \geq \min _{\iota \in \mathbb{R}^{+}} \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\iota}+b \cdot \iota\right) \stackrel{\text { convexity }}{\geq} \frac{b \lambda(\log ((e a / b) \log (1+\lambda)))}{(1+\lambda) \log (1+\lambda)}
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Fact $1 \mathbb{P}(v \in \mathrm{I} \mid v$ uncovered $)=\frac{\lambda}{1+\lambda}$
Fact $2 \mathbb{P}(v$ uncovered $\mid v$ has j uncovered neighbours $)=\frac{1}{(1+\lambda)^{j}}$

$$
\begin{aligned}
& \mathbb{P}(v \in \mathbf{I})=\mathbb{P}(v \in \operatorname{I} \text { and } v \text { uncovered }) \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{P}(v \text { uncovered }) \\
& \stackrel{\text { Fact } 2}{=} \frac{\lambda}{1+\lambda} \sum_{j} \frac{\mathbb{P}(v \text { has } j \text { uncovered neighbours })}{(1+\lambda)^{j}} \\
&=\frac{\lambda}{1+\lambda} \mathbb{E}(1+\lambda)^{-J} \stackrel{\text { Jensen's }}{\geq} \frac{\lambda}{1+\lambda}(1+\lambda)^{-\mathbb{E} J} \\
& \mathbb{E}|N(v) \cap \mathbf{I}| \stackrel{\text { linearity }}{=} \mathbb{P}(u \in I \mid u \text { uncovered }) \cdot \mathbb{E} J \stackrel{\text { Fact } 1}{=} \frac{\lambda}{1+\lambda} \mathbb{E} \mathbf{J} \\
& \Longrightarrow a \cdot \mathbb{P}(v \in \mathbf{I})+\boldsymbol{b} \cdot \mathbb{E}|N(v) \cap \mathbf{I}| \geq \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\mathbb{E} J}+b \cdot \mathbb{E} J\right) \\
& \geq \min _{\iota \in \mathbb{R}^{+}} \frac{\lambda}{1+\lambda}\left(a \cdot(1+\lambda)^{-\iota}+b \cdot \iota\right) \stackrel{\text { convexity }}{\geq} \frac{b \lambda(\log ((\text { ea } / b) \log (1+\lambda)))}{(1+\lambda) \log (1+\lambda)}
\end{aligned}
$$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

In A, Fact 1 and Fact 2 imply

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq \frac{b \lambda(\log ((e a / b) \log (1+\lambda)))}{(1+\lambda) \log (1+\lambda)}
$$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

In A, Fact 1 and Fact 2 imply

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq \frac{b \lambda(\log ((e a / b) \log (1+\lambda)))}{(1+\lambda) \log (1+\lambda)}
$$

and so from B it suffices to show

$$
a+b \cdot \Delta \lesssim \frac{\Delta}{\log \Delta} \text { subject to } \frac{b \lambda(\log ((e a / b) \log (1+\lambda)))}{(1+\lambda) \log (1+\lambda)} \geq 1 \leadsto
$$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any triangle-free G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

LOCAL OCCUPANCY METHOD

Distribution I on $\mathscr{I}(G)$ has local (a, b)-occupancy if for every vertex v

$$
a \cdot \mathbb{P}(v \in \mathrm{I})+b \cdot \mathbb{E}|N(v) \cap \mathrm{I}| \geq 1
$$

A Hard-core model on any locally sparse** G has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ

B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

[^5]
LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and every induced subgraph F of the neighbourhood subgraph $G[N(v)]$.

$$
a \cdot \frac{\lambda}{1+\lambda} \frac{1}{Z_{F}(\lambda)}+b \cdot \frac{\lambda Z_{F}^{\prime}(\lambda)}{Z_{F}(\lambda)} \geq 1
$$

A Hard-core model on any locally sparse ${ }^{* *} G$ has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$

[^6]
LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and every induced subgraph F of the neighbourhood subgraph $G[N(v)]$.

$$
a \cdot \frac{\lambda}{1+\lambda} \frac{1}{Z_{F}(\lambda)}+b \cdot \frac{\lambda Z_{F}^{\prime}(\lambda)}{Z_{F}(\lambda)} \geq 1
$$

A Hard-core model on any locally sparse ${ }^{* *} G$ has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$
C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $\operatorname{ch}(G) \leq a \cdot O(\log \Delta)+(1+\varepsilon) b \cdot \Delta$

[^7]
LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and every induced subgraph F of the neighbourhood subgraph $G[N(v)]$.

$$
a \cdot \frac{\lambda}{1+\lambda} \frac{1}{Z_{F}(\lambda)}+b \cdot \frac{\lambda Z_{F}^{\prime}(\lambda)}{Z_{F}(\lambda)} \geq 1
$$

A Hard-core model on any locally sparse ${ }^{* *} G$ has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$
C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $\operatorname{ch}(G) \leq a \cdot O(\log \Delta)+(1+\varepsilon) b \cdot \Delta$
\Longrightarrow optimisation for $\alpha(G)$ or $\chi_{f}(G)$ also yields bounds for $\chi(G)$ and $\operatorname{ch}(G)$

[^8]
LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and every induced subgraph F of the neighbourhood subgraph $G[N(v)]$.

$$
a \cdot \frac{\lambda}{1+\lambda} \frac{1}{Z_{F}(\lambda)}+b \cdot \frac{\lambda Z_{F}^{\prime}(\lambda)}{Z_{F}(\lambda)} \geq 1
$$

A Hard-core model on any locally sparse ${ }^{* *} G$ has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$
C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $\operatorname{ch}(G) \leq a \cdot O(\log \Delta)+(1+\varepsilon) b \cdot \Delta$
\Longrightarrow optimisation for $\alpha(G)$ or $\chi_{f}(G)$ also yields bounds for $\chi(G)$ and $\operatorname{ch}(G)$
C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019) combined with properties of the hard-core model

[^9]
LOCAL OCCUPANCY METHOD

Hard-core model on G has local (a, b)-occupancy if for every vertex v and every induced subgraph F of the neighbourhood subgraph $G[N(v)]$.

$$
a \cdot \frac{\lambda}{1+\lambda} \frac{1}{Z_{F}(\lambda)}+b \cdot \frac{\lambda Z_{F}^{\prime}(\lambda)}{Z_{F}(\lambda)} \geq 1
$$

A Hard-core model on any locally sparse ${ }^{* *} G$ has local (a, b)-occupancy, for specific a, b depending on fugacity λ and maximum degree Δ
B If there is probability distribution I on $\mathscr{I}(G)$ with local (a, b)-occupancy, then $\chi_{f}(G) \leq a+b \cdot \Delta$
C If hard-core model has local (a, b)-occupancy (+ mild conditions), then $\operatorname{ch}(G) \leq a \cdot O(\log \Delta)+(1+\varepsilon) b \cdot \Delta$
\Longrightarrow optimisation for $\alpha(G)$ or $\chi_{f}(G)$ also yields bounds for $\chi(G)$ and $\operatorname{ch}(G)$
C relies crucially on seminal proofs of Molloy (2019) and Bernshteyn (2019) combined with properties of the hard-core model
C^{\prime}, an algorithmic version of C (under additional conditions), merges the hard-core model into framework of Achlioptas, Iliopoulous, Sinclair (2019)

[^10]
Graphs with colourable neighbourhoods

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly, Nelson, Postle 2018+)
$\operatorname{ch}(G)=O\left(\log (r+1) \frac{\Delta}{\log \Delta}\right)$ for any G of maximum degree Δ in which every neighbourhood is r-colourable

Graphs with colourable neighbourhoods

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly, Nelson, Postle 2018+)
$\operatorname{ch}(G)=O\left(\log (r+1) \frac{\Delta}{\log \Delta}\right)$ for any G of maximum degree Δ in which every neighbourhood is r-colourable

Theorem (Davies, Kang, Pirot, Sereni 2020+)
$\operatorname{ch}(G) \lesssim K(r) \cdot \frac{\Delta}{\log \Delta}$ for any G of maximum degree Δ in which every neighbourhood is r-colourable, where $K(1)=1$ and $K(r) \sim \log r$ as $r \rightarrow \infty$

Graphs with colourable neighbourhoods

Theorem (Johansson 1996+, cf. Alon 1996, Molloy 2019, Bonamy, Kelly, Nelson, Postle 2018+) $\operatorname{ch}(G)=O\left(\log (r+1) \frac{\Delta}{\log \Delta}\right)$ for any G of maximum degree Δ in which every neighbourhood is r-colourable

Theorem (Davies, Kang, Pirot, Sereni 2020+)
$\operatorname{ch}(G) \lesssim K(r) \cdot \frac{\Delta}{\log \Delta}$ for any G of maximum degree Δ in which every neighbourhood is r-colourable, where $K(1)=1$ and $K(r) \sim \log r$ as $r \rightarrow \infty$

NB: $r=1$ corresponds to Molloy's and $r=\Delta+1$ corresponds to trivial bound

C_{k}-FREE GRAPHS

Theorem (Kim 1995)
$\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any G of girth 5 and maximum degree Δ

C_{k}-FREE GRAPHS

Theorem $($ Kim 1995)
$\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}$ for any G of girth 5 and maximum degree Δ
Theorem (Davies, Kang, Pirot, Sereni 2020+)
$\operatorname{ch}(G) \lesssim \max \left\{\frac{\Delta}{\log (\Delta /(k \log \Delta))}, O(k \log \Delta)\right\}$
for any $C_{k}-$ free G of maximum degree Δ

C_{k}-FREE GRAPHS

```
Theorem (Kim 1995)
\(\operatorname{ch}(G) \lesssim \frac{\Delta}{\log \Delta}\) for any \(G\) of girth 5 and maximum degree \(\Delta\)
Theorem (Davies, Kang, Pirot, Sereni 2020+)
\(\operatorname{ch}(G) \lesssim \max \left\{\frac{\Delta}{\log (\Delta /(k \log \Delta))}, O(k \log \Delta)\right\}\)
    for any \(C_{k}\)-free \(G\) of maximum degree \(\Delta\)
```

NB: $k=\Delta^{o(1)}$ includes Kim's and Molloy's

Graphs with sparse neighbourhoods

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas, Iliopoulos, Sinclair 2019)
$\operatorname{ch}(G)=O\left(\frac{\Delta}{\log (\Delta / \sqrt{T})}\right)$
for any G of maximum degree Δ with each vertex in $\leq T$ triangles, $1 / 2 \leq T \leq\binom{\Delta}{2}$

Graphs with sparse neighbourhoods

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas, Iliopoulos, Sinclair 2019)
$\operatorname{ch}(G)=O\left(\frac{\Delta}{\log (\Delta / \sqrt{T})}\right)$
for any G of maximum degree Δ
with each vertex in $\leq T$ triangles, $1 / 2 \leq T \leq\binom{\Delta}{2}$
Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2018+)
$\operatorname{ch}(G) \lesssim \max \left\{\frac{\Delta}{\log (\Delta /(\sqrt{T} \log \Delta))}, O(\sqrt{T} \log \Delta)\right\}$
for any G of maximum degree Δ with each vertex in $\leq T$ triangles, $1 / 2 \leq T \leq\binom{\Delta}{2}$

Graphs with sparse neighbourhoods

Theorem (Alon, Krivelevich, Sudakov 1999, cf. Vu 2002 and Achlioptas, Iliopoulos, Sinclair 2019)
$\operatorname{ch}(G)=O\left(\frac{\Delta}{\log (\Delta / \sqrt{T})}\right)$
for any G of maximum degree Δ
with each vertex in $\leq T$ triangles, $1 / 2 \leq T \leq\binom{\Delta}{2}$
Theorem (Davies, Kang, Pirot, Sereni 2020+, cf. Davies, de Joannis de Verclos, Kang, Pirot 2018+)
$\operatorname{ch}(G) \lesssim \max \left\{\frac{\Delta}{\log (\Delta /(\sqrt{T} \log \Delta))}, O(\sqrt{T} \log \Delta)\right\}$
for any G of maximum degree Δ with each vertex in $\leq T$ triangles, $1 / 2 \leq T \leq\binom{\Delta}{2}$

NB: $T=\Delta^{o(1)}$ includes Molloy's

BARRIERS

" 89 years of $R(3, k)$ "
Theorem (Shearer 1983)
$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ

Barriers

" 89 years of $R(3, k)$ "
Theorem (Shearer 1983)
$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Theorem (Davies, Jenssen, Perkins, Roberts 2018)
$\frac{Z_{G}^{\prime}(1)}{Z_{G}(1)} \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Asymptotically sharp for the random Δ-regular graphs $G_{n, \Delta}$!

BARRIERS

" 89 years of $R(3, k)$ "
Theorem (Shearer 1983)
$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Theorem (Davies, Jenssen, Perkins, Roberts 2018)
$\frac{Z_{G}^{\prime}(1)}{Z_{G}(1)} \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Asymptotically sharp for the random Δ-regular graphs $G_{n, \Delta}$!
Conjecture (Davies, Jenssen, Perkins, Roberts 2018)
$\alpha(G) \gtrsim 2 \cdot \frac{Z_{G}^{\prime}(1)}{Z_{G}(1)}$ for any triangle-free G of minimum degree δ

Barriers

" 89 years of $R(3, k)$ "
Theorem (Shearer 1983)
$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Theorem (Davies, Jenssen, Perkins, Roberts 2018)
$\frac{Z_{G}^{\prime}(1)}{Z_{G}(1)} \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Asymptotically sharp for the random Δ-regular graphs $G_{n, \Delta}$!
Conjecture (Davies, Jenssen, Perkins, Roberts 2018)
$\alpha(G) \gtrsim 2 \cdot \frac{Z_{G}^{\prime}(1)}{Z_{G}(1)}$ for any triangle-free G of minimum degree δ
Question (Karp 1976)
Is there a polynomial-time algorithm that with high probability outputs an independent set of $G_{n, 1 / 2}$ of size $(1+\varepsilon) \log _{2} n$?

BARRIERS

" 89 years of $R(3, k)$ "
Theorem (Shearer 1983)
$\alpha(G) \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Theorem (Davies, Jenssen, Perkins, Roberts 2018)
$\frac{Z_{G}^{\prime}(1)}{Z_{G}(1)} \gtrsim \frac{n \log \Delta}{\Delta}$ for any n-vertex triangle-free G of maximum degree Δ
Asymptotically sharp for the random Δ-regular graphs $G_{n, \Delta}$!
Conjecture (Davies, Jenssen, Perkins, Roberts 2018)
$\alpha(G) \gtrsim 2 \cdot \frac{Z_{G}^{\prime}(1)}{Z_{G}(1)}$ for any triangle-free G of minimum degree δ
Question (Karp 1976)
Is there a polynomial-time algorithm that with high probability outputs an independent set of $G_{n, \Delta}$ of size $(1+\varepsilon)(n \log \Delta) / \Delta$?

Structure of Triangle-Free graphs

Theorem (Shearer 1983)
$\frac{n}{\alpha(G)} \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G

Structure of Triangle-Free graphs

Theorem (Shearer 1983)
$\frac{n}{\alpha(G)} \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G
Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\chi_{f}(G) \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G

Structure of TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)
$\frac{n}{\alpha(G)} \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G
Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\chi_{f}(G) \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\operatorname{ch}(G)=O\left(\sqrt{\frac{n}{\log n}}\right)$ for any n-vertex triangle-free G

Structure of Triangle-Free graphs

Theorem (Shearer 1983)
$\frac{n}{\alpha(G)} \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G
Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\chi_{f}(G) \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\operatorname{ch}(G)=O\left(\sqrt{\frac{n}{\log n}}\right)$ for any n-vertex triangle-free G

Known: $\quad \chi_{f}(G) \lesssim \sqrt{\frac{4 n}{\log n}}, \quad \chi(G) \lesssim \sqrt{\frac{8 n}{\log n}}, \quad \operatorname{ch}(G)=O(\sqrt{n})$

Structure of TRIANGLE-FREE GRAPHS

Theorem (Shearer 1983)
$\frac{n}{\alpha(G)} \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G
Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\chi_{f}(G) \lesssim \sqrt{\frac{2 n}{\log n}}$ for any n-vertex triangle-free G

Conjecture (Cames van Batenburg, de Joannis de Verclos, Kang, Pirot) $\operatorname{ch}(G)=O\left(\sqrt{\frac{n}{\log n}}\right)$ for any n-vertex triangle-free G

Known: $\quad \chi_{f}(G) \lesssim \sqrt{\frac{4 n}{\log n}}, \quad \chi(G) \lesssim \sqrt{\frac{8 n}{\log n}}, \quad \operatorname{ch}(G)=O(\sqrt{n})$
NB: Conjecture on "fractional colouring with local demands" implies the first (Kelly \& Postle 2018+)

Structure of Triangle-Free graphs

Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

Theorem (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G) \geq \frac{\delta}{2 \chi_{f}(G)}$ for any G with minimum degree δ

Structure of Triangle-Free graphs

Conjecture (Esperet, Kang, Thomassé 2019) $\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ

Theorem (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G) \geq \frac{\delta}{2 \chi_{f}(G)}$ for any G with minimum degree δ
Conjecture (Harris 2019)
$\chi_{f}(G)=O\left(\frac{\delta^{*}}{\log \delta^{*}}\right)$ for any triangle-free G with degeneracy δ^{*}
NB: False for $\chi(G)$ (Alon, Krivelevich, Sudakov 1999)

Structure of Triangle-Free graphs

Conjecture (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G)=\Omega(\log \delta)$ for any triangle-free G of minimum degree δ
Theorem (Esperet, Kang, Thomassé 2019)
$\operatorname{BID}(G) \geq \frac{\delta}{2 \chi_{f}(G)}$ for any G with minimum degree δ
Conjecture (Harris 2019)
$\chi_{f}(G)=O\left(\frac{\delta^{*}}{\log \delta^{*}}\right)$ for any triangle-free G with degeneracy δ^{*}
NB: False for $\chi(G)$ (Alon, Krivelevich, Sudakov 1999)
Question (Blumenthal, Lidický, Martin, Norin, Pfender, Volec 2018+)
$\chi_{f}(G)=O(\rho)$ for any triangle-free G where $\rho=\max _{\emptyset \neq H \subseteq G} \frac{|H|}{\alpha(H)}$?
NB: False without triangle-free (BLMNPV 2018+)

Structure of TriAngle-Free graphs

Conjecture (Alon \& Krivelevich 1998) $\mathrm{ch}(G) \lesssim \log _{2} \Delta$ for any bipartite G of maximum degree Δ

Structure of Triangle-Free graphs

Conjecture (Alon \& Krivelevich 1998) $\mathrm{ch}(G) \lesssim \log _{2} \Delta$ for any bipartite G of maximum degree Δ

Recent: one side $\log \Delta$, other side $\sim \Delta / \log \Delta$ (Alon, Cambie, Kang 2020+)

Gràcies!

[^0]: *With Alon, Cambie, Cames van Batenburg, Davies, Esperet, de Joannis de Verclos, Pirot, Sereni, Thomassé. Support from Nuffic/PHC, ANR, FWB, NWO, ERC, BSF, NSF, Simons grants.

[^1]: ${ }^{\dagger}$ More fully, the lattice gas with hard-core self-repulsion and nearest-neighbour exclusion. Picture credit: Wikipedia/Grap-wh

[^2]: ${ }^{\ddagger}$ A very recent simplification by Glock 2020+

[^3]: ${ }^{\text {4 }}$ Picture credit: Soifer 2009

[^4]: ${ }^{\|}$Yes, cf. Davies, Jenssen, Perkins, Roberts 2018. . .

[^5]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

[^6]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

[^7]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

[^8]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

[^9]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

[^10]: ${ }^{* *}$ i.e. satisfying some structural sparsity condition for every neighbourhood subgraph

