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The hypercube

Definition
The n-dimensional hypercube Q

n
:

V (Q
n
): set of all n-bit 01-strings.

E (Q
n
): xy 2 E i↵ they di↵er on only one position.

(0,0) (1,0)

(0,1) (1,1)

(0,0,0) (1,0,0)

(0,1,0)
(1,1,0)

(0,0,1)
(1,0,1)

(0,1,1) (1,1,1)

Theorem
For all n � 2, Q

n
is Hamiltonian.
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Binomial random graphs

Gn,p: n vertices, add each edge with probability p independently.

Definition
Let P be a monotone increasing graph property. Then, p

⇤
= p

⇤
(n)

is a threshold for P if

P[Gn,p 2 P]!
(
1 if p/p⇤ ! •,

0 if p/p⇤ ! 0.

Similarly, p
⇤
= p

⇤
(n) is a sharp threshold for P if, for all e > 0,

P[Gn,p 2 P]!
(
1 if p � (1+ e)p⇤,
0 if p  (1� e)p⇤.

Q
n
p : delete each edge of Q

n
independently with probability 1�p.



Some thresholds

Theorem
Sharp threshold for connectivity (Erdős & Rényi, ’60), containment

of a perfect matching (Erdős & Rényi, ’66) and Hamiltonicity

(Kořsunov, ’76) in Gn,p: p
⇤
= logn/n.

Theorem
Sharp threshold for connectivity (Burtin, ’77) and containment of

a perfect matching (Bollobás, ’90) in Q
n
p : p

⇤
= 1/2.

Conjecture
Sharp threshold for Hamiltonicity in Q

n
p : p

⇤
= 1/2.

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For any k 2 N, the sharp threshold for the property of containing

k edge-disjoint Hamilton cycles in Q
n
p is p

⇤
= 1/2.



Graph processes

Given an n-vertex graph G with m edges, let G̃ = (G0,G1, . . . ,Gm),

where G0 is the empty graph and Gi+1 = Gi [{e}, with e chosen

uniformly at random among the missing edges.

Hitting time for property P: tP(G̃ ) := min{i 2 [m] : Gi 2 P}.

Theorem
A.a.s. tPM(K̃n) = tCON(K̃n) = td1(K̃n).

Theorem (Ajtai, Komlós, Szemerédi, ’85; Bollobás, ’84)

A.a.s. tHAM(K̃n) = td2(K̃n).

Theorem (Bollobás, ’90)

A.a.s. tPM(Q̃n) = tCON(Q̃n) = td1(Q̃n).

Conjecture
A.a.s. tHAM(Q̃n) = td2(Q̃n).
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Graph processes

Given an n-vertex graph G with m edges, let G̃ = (G0,G1, . . . ,Gm),

where G0 is the empty graph and Gi+1 = Gi [{e}, with e chosen

uniformly at random among the missing edges.

Hitting time for property P: tP(G̃ ) := min{i 2 [m] : Gi 2 P}.

Let HMk denote the property that G contains bk/2c Hamilton

cycles and k�2bk/2c perfect matchings, all edge-disjoint.

Theorem (Bollobás, Frieze, ’85)

For any k 2 N, a.a.s. tHMk(K̃n) = tdk(K̃n).

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For any k 2 N, a.a.s. tHMk(Q̃
n) = tdk(Q̃n).



Randomly perturbed graphs

Union of a deterministic graph and a random graph.

Theorem (Bohman, Frieze, Martin, ’03)

Let a > 0. Let H be an n-vertex graph with d (H)� an. If

p � C (a)/n, then a.a.s. H [Gn,p is Hamiltonian.

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For all e,a 2 (0,1] and k 2 N, the following holds.

Let H be a spanning subgraph of Q
n
such that d (H)� an.

Then, a.a.s. H [Q
n
e contains k edge-disjoint Hamilton cycles.

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For every integer k � 2, there exists e > 0 such that a.a.s., for

every spanning subgraph H of Q
n
with d (H)� k , the graph

H [Q
n
1/2�e contains a collection of bk/2c Hamilton cycles and

k�2bk/2c perfect matchings, all pairwise edge-disjoint.
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Randomly perturbed graphs

Union of a deterministic graph and a random graph.

Theorem (Bohman, Frieze, Martin, ’03)

Let a > 0. Let H be an n-vertex graph with d (H)� an. If

p � C (a)/n, then a.a.s. H [Gn,p is Hamiltonian.

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For all e,a 2 (0,1] and k 2 N, the following holds.

Let H be a spanning subgraph of Q
n
such that d (H)� an.

Then, a.a.s. H [Q
n
e contains k edge-disjoint Hamilton cycles.

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

For every integer k � 2, there exists e > 0 such that a.a.s., for

every spanning subgraph H of Q
n
with d (H)� k , the graph

H [Q
n
1/2�e contains a collection of bk/2c Hamilton cycles and

k�2bk/2c perfect matchings, all pairwise edge-disjoint.



Proof ideas
"

¥



Proof ideas

Idea: follow spanning trees in large subcubes if possible

use small subcubes to move between trees
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Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

8 d ,e 2 (0,1], a.a.s. Qn
e contains a cycle of length � (1�d )2n.

Fix s coordinates.

This partitions Q
n
.

Find a near-spanning

bounded-degree tree.

Find a near-perfect

cover with copies of

Q
`
. .



Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

8 d ,e 2 (0,1], a.a.s. Qn
e contains a cycle of length � (1�d )2n.

I Near-spanning bounded-degree tree: we “grow” trees from

several “corners” of the cube, following a branching process.

I Near-perfect Q
`
-cover: given by the Rödl nibble.
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Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

8 d ,e 2 (0,1], a.a.s. Qn
e contains a cycle of length � (1�d )2n.

Fix s coordinates.

This partitions Q
n
.

Find a near-spanning

bounded-degree tree.

Find a near-perfect

cover with copies of

Q
`
.
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Proof ideas

We now construct a skeleton for a long cycle.

We turn this into the desired cycle with the ‘connecting lemmas’.
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Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

Let e,a 2 (0,1], H ✓Q
n
, d (H)� an. Then, a.a.s. H [Q

n
e 2 HAM.

Absorbing structure:

We require that

I the near-spanning tree satisfies

some nice conditions (for each

vertex, covers almost all

neighbourhood),

I the near cover satisfies very nice

conditions, some related to the

graph H.

Need to deal with parity issues:

vertices are absorbed in pairs.
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Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

Let e,a 2 (0,1], H ✓Q
n
, d (H)� an. Then, a.a.s. H [Q

n
e 2 HAM.

Absorbing structure:
We require that

I the near-spanning tree satisfies

some nice conditions (for each

vertex, covers almost all

neighbourhood),

I the near cover satisfies very nice

conditions, some related to the

graph H.

Need to deal with parity issues:

vertices are absorbed in pairs.

x



Proof ideas

The Rödl nibble

*i¥¥
H nico properties

VUH = VLQY

EEH) = copies of Qe ni Q;



Proof ideas

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

Let e,a 2 (0,1], H ✓Q
n
, d (H)� an. Then, a.a.s. H [Q

n
e 2 HAM.

Absorbing structure:
We require that

I the near-spanning tree satisfies

some nice conditions (for each

vertex, covers almost all

neighbourhood),

I the near cover satisfies very nice

conditions, some related to the

graph H.

Need to deal with parity issues:

vertices are absorbed in pairs.
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Proof ideas

Some other problems that need ironing out
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Proof ideas

For the hitting time, we need to deal with vertices of very low

degree.

f (L)

L

x+d +d4

x+d x+d +a

x+a+d1

x+a x

f (x)

x+b

x+b+d2

x+ c+b x+ c x+ c+d3

P1

P2

P3

P4

P5

P6

x+a+b+d1

x+a+d1

x

x+b

x+a

x+a+b

x+a+b+d2

x+b+d2
P1

P2

f (L)

Lx+d1+d2

x+d1
x

x+a= f (x)

x+b

x+b+d3 x+d1+b

P1

P2

P3



Open problems

Theorem (Condon, Espuny D́ıaz, Girão, Kühn, Osthus, ’20+)

8 d ,e 2 (0,1], a.a.s. Qn
e contains a cycle of length � (1�d )2n.

Conjecture
Suppose that p = p(n) satisfies that pn! •. Then, a.a.s. Q

n
p

contains a cycle of length (1�o(1))2
n
.

Conjecture
Suppose e > 0 and an integer `� 2 are fixed and p � 1/2+ e.
Then, a.a.s. Q

n
p contains a C2`-factor, that is, a set of

vertex-disjoint cycles of length 2
`
which together contain all

vertices of Q
n
.


