Hamiltonicity of random subgraphs of the hypercube

Alberto Espuny Díaz

Technische Universität Ilmenau
joint work with Padraig Condon, António Girão, Daniela Kühn and Deryk Osthus
LIMDA Joint Seminar, Barcelona
11 November 2020

The hypercube

Definition

The n-dimensional hypercube Q^{n} :
$V\left(Q^{n}\right)$: set of all n-bit 01-strings.
$E\left(Q^{n}\right): x y \in E$ iff they differ on only one position.

Theorem
For all $n \geq 2, Q^{n}$ is Hamiltonian.

Binomial random graphs

$G_{n, p}: n$ vertices, add each edge with probability p independently.
Definition
Let \mathscr{P} be a monotone increasing graph property. Then, $p^{*}=p^{*}(n)$ is a threshold for \mathscr{P} if

$$
\mathbb{P}\left[G_{n, p} \in \mathscr{P}\right] \rightarrow \begin{cases}1 & \text { if } p / p^{*} \rightarrow \infty \\ 0 & \text { if } p / p^{*} \rightarrow 0\end{cases}
$$

Similarly, $p^{*}=p^{*}(n)$ is a sharp threshold for \mathscr{P} if, for all $\varepsilon>0$,

$$
\mathbb{P}\left[G_{n, p} \in \mathscr{P}\right] \rightarrow \begin{cases}1 & \text { if } p \geq(1+\varepsilon) p^{*} \\ 0 & \text { if } p \leq(1-\varepsilon) p^{*}\end{cases}
$$

Q_{p}^{n} : delete each edge of Q^{n} independently with probability $1-p$.

Some thresholds

Theorem
Sharp threshold for connectivity (Erdős \& Rényi, '60), containment of a perfect matching (Erdős \& Rényi, '66) and Hamiltonicity (Koršunov, '76) in $G_{n, p}: p^{*}=\log n / n$.

Theorem
Sharp threshold for connectivity (Burtin, '77) and containment of a perfect matching (Bollobás, '90) in $Q_{p}^{n}: p^{*}=1 / 2$.

Conjecture

Sharp threshold for Hamiltonicity in $Q_{p}^{n}: p^{*}=1 / 2$.
Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+)
For any $k \in \mathbb{N}$, the sharp threshold for the property of containing k edge-disjoint Hamilton cycles in Q_{p}^{n} is $p^{*}=1 / 2$.

Graph processes

Given an n-vertex graph ${ }^{\prime \prime}$ with m edges, let $\tilde{G}=\left(G_{0}, G_{1}, \ldots, G_{m}\right)$, where G_{0} is the empty graph and $G_{i+1}=G_{i} \cup\{e\}$, with e chosen uniformly at random among the missing edges.
Hitting time for property $\mathscr{P}: \tau_{\mathscr{P}}(\tilde{G}):=\min \left\{i \in[m]: G_{i} \in \mathscr{P}\right\}$.
Theorem
A.a.s. $\tau_{\mathrm{PM}}\left(\tilde{K}_{n}\right)=\tau_{\mathrm{CON}}\left(\tilde{K}_{n}\right)=\tau_{\delta 1}\left(\tilde{K}_{n}\right)$.

Theorem (Ajtai, Komlós, Szemerédi, '85; Bollobás, '84) A.a.s. $\tau_{\mathrm{HAM}}\left(\tilde{K}_{n}\right)=\tau_{\delta 2}\left(\tilde{K}_{n}\right)$.

Theorem (Bollobás, '90)
A.a.s. $\tau_{\mathrm{PM}}\left(\tilde{Q}^{n}\right)=\tau_{\mathrm{CON}}\left(\tilde{Q}^{n}\right)=\tau_{\delta 1}\left(\tilde{Q}^{n}\right)$.

Conjecture
A.a.s. $\tau_{\mathrm{HAM}}\left(\tilde{Q}^{n}\right)=\tau_{\delta 2}\left(\tilde{Q}^{n}\right)$.

Graph processes

Given an n-vertex graph G with m edges, let $\tilde{G}=\left(G_{0}, G_{1}, \ldots, G_{m}\right)$, where G_{0} is the empty graph and $G_{i+1}=G_{i} \cup\{e\}$, with e chosen uniformly at random among the missing edges. Hitting time for property $\mathscr{P}: \tau_{\mathscr{P}}(\tilde{G}):=\min \left\{i \in[m]: G_{i} \in \mathscr{P}\right\}$.

Let HMk denote the property that G contains $\lfloor k / 2\rfloor$ Hamilton cycles and $k-2\lfloor k / 2\rfloor$ perfect matchings, all edge-disjoint.
Theorem (Bollobás, Frieze, '85)
For any $k \in \mathbb{N}$, a.a.s. $\tau_{\mathrm{HM} k}\left(\tilde{K}_{n}\right)=\tau_{\delta k}\left(\tilde{K}_{n}\right)$.
Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+
For any $k \in \mathbb{N}$, a.a.s. $\tau_{\mathrm{HM} k}\left(\tilde{Q}^{n}\right)=\tau_{\delta k}\left(\tilde{Q}^{n}\right)$.

Randomly perturbed graphs

Union of a deterministic graph and a random graph.
Theorem (Bohman, Frieze, Martin, '03)
Let $\alpha>0$. Let H be an n-vertex graph with $\delta(H) \geq \alpha n$. If $p \geq C(\alpha) / n$, then a.a.s. $H \cup G_{n, p}$ is Hamiltonian.

Theorem (Cordon, Espuny Díaz, Girão, Kühn, Osthus, '20+)
For all $\varepsilon, \alpha \in(0,1]$ and $k \in \mathbb{N}$, the following holds.
Let H be a spanning subgraph of Q^{n} such that $\delta(H) \geq \alpha n$.
Then, a.a.s. $H \cup Q_{\varepsilon}^{n}$ contains k edge-disjoint Hamilton cycles.

$$
\begin{aligned}
& \text { Lemma - } \forall \varepsilon, \exists \alpha \text { st. } \delta\left(Q_{\frac{1}{2}+\varepsilon}^{n}\right) \geqslant \alpha n \\
& P f=Q_{\frac{1}{2}+\varepsilon}^{n} \geq \underbrace{\underbrace{n}_{\frac{1}{2}+\frac{\varepsilon}{2}}}_{H} \cup Q_{\frac{\varepsilon}{2}}^{n}
\end{aligned}
$$

Randomly perturbed graphs

Union of a deterministic graph and a random graph.
Theorem (Bohman, Frieze, Martin, '03)
Let $\alpha>0$. Let H be an n-vertex graph with $\delta(H) \geq \alpha n$. If $p \geq C(\alpha) / n$, then a.a.s. $H \cup G_{n, p}$ is Hamiltonian.

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+)
For all $\varepsilon, \alpha \in(0,1]$ and $k \in \mathbb{N}$, the following holds.
Let H be a spanning subgraph of Q^{n} such that $\delta(H) \geq \alpha n$.
Then, a.a.s. $H \cup Q_{\varepsilon}^{n}$ contains k edge-disjoint Hamilton cycles.
Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+
For every integer $k \geq 2$, there exists $\varepsilon>0$ such that a.a.s., for every spanning subgraph H of Q^{n} with $\delta(H) \geq k$, the graph $H \cup Q_{1 / 2-\varepsilon}^{n}$ contains a collection of $\lfloor k / 2\rfloor$ Hamilton cycles and $k-2\lfloor k / 2\rfloor$ perfect matchings, all pairwise edge-disjoint.

Proof ideas
Q

Proof ideas

Idea: follow spanning trees in large subcubes if possible use small subcubes to move between trees

Proof ideas

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+) $\forall \delta, \varepsilon \in(0,1]$, a.a.s. Q_{ε}^{n} contains a cycle of length $\geq(1-\delta) 2^{n}$.

Fix s coordinates. This partitions Q^{n}.

Find a near-spanning bounded-degree tree.

Find a near-perfect cover with copies of Q). conitat

Proof ideas

Theorem (Cordon, Espuny Díaz, Girão, Kühn, Osthus, '20+) $\forall \delta, \varepsilon \in(0,1]$, a.a.s. Q_{ε}^{n} contains a cycle of length $\geq(1-\delta) 2^{n}$.

- Near-spanning bounded-degree tree: we "grow" trees from several "corners" of the cube, following a branching process.
- Near-perfect Q^{ℓ}-cover: given by the Rödl nibble.

$$
\begin{aligned}
& d_{Q_{\varepsilon}^{n}}(x) \approx \varepsilon_{u} \\
& C_{\text {worse }} M
\end{aligned}
$$

Proof ideas

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, ' 20^{+}) $\forall \delta, \varepsilon \in(0,1]$, a.a.s. Q_{ε}^{n} contains a cycle of length $\geq(1-\delta) 2^{n}$.

Fix s coordinates. This partitions Q^{n}.

Find a near-spanning bounded-degree tree.

Find a near-perfect cover with copies of Q1.

Proof ideas
We now construct a skeleton for a long cycle.

$\rightarrow C$ ogle contains al Q Q^{l}

We turn this into the desired cycle with the 'connecting lemmas'.

Proof ideas

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+)
Let $\varepsilon, \alpha \in(0,1], H \subseteq Q^{n}, \delta(H) \geq \alpha n$. Then, a.a.s. $H \cup Q_{\varepsilon}^{n} \in$ HAM.

Proof ideas

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+ ${ }^{+}$
Let $\varepsilon, \alpha \in(0,1], H \subseteq Q^{n}, \delta(H) \geq \alpha n$. Then, a.a.s. $H \cup Q_{\varepsilon}^{n} \in$ HAM.
Absorbing structure:
We require that

- the near-spanning tree satisfies some nice conditions (for each vertex, covers almost all neighbourhood),
- the near cover satisfies very nice conditions, some related to the graph H.

Proof ideas
The Rödl nibble

Ht mice puopertion

$$
\begin{aligned}
& V(l t)=V\left(Q^{n}\right) \\
& E(H)=\operatorname{copis} \text { of } Q^{e} \text { in } Q_{\varepsilon}^{n}
\end{aligned}
$$

Proof ideas

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+ ${ }^{+}$
Let $\varepsilon, \alpha \in(0,1], H \subseteq Q^{n}, \delta(H) \geq \alpha n$. Then, a.a.s. $H \cup Q_{\varepsilon}^{n} \in$ HAM.
Absorbing structure:
We require that

- the near-spanning tree satisfies some nice conditions (for each vertex, covers almost all neighbourhood),
- the near cover satisfies very nice conditions, some related to the graph H.
Need to deal with parity issues: vertices are absorbed in pairs.

Proof ideas

Some other problems that need ironing out

Proof ideas

For the hitting time, we need to deal with vertices of very low degree.

Open problems

Theorem (Condon, Espuny Díaz, Girão, Kühn, Osthus, '20+)
$\forall \delta, \varepsilon \in(0,1]$, a.a.s. Q_{ε}^{n} contains a cycle of length $\geq(1-\delta) 2^{n}$.

Conjecture

Suppose that $p=p(n)$ satisfies that $p n \rightarrow \infty$. Then, a.a.s. Q_{p}^{n} contains a cycle of length $(1-o(1)) 2^{n}$.

Conjecture

Suppose $\varepsilon>0$ and an integer $\ell \geq 2$ are fixed and $p \geq 1 / 2+\varepsilon$.
Then, a.a.s. Q_{p}^{n} contains a $C_{2^{-}}$-factor, that is, a set of vertex-disjoint cycles of length 2^{ℓ} which together contain all vertices of Q^{n}.

