Minimum bisection of random 3-regular graphs Lyuben Lichev

Joint work with Dieter Mitsche

Minimum bisection of random 3-regular graphs

Introduction

The lower bound

The upper bound

The problem

- Graph G(V, E), |V| being even.
- Bisection of G: partition (V_1, V_2) of V with $|V_1| = |V_2|$.
- Size of a bisection (V_1, V_2) : number of edges crossing.
- Bisection width of G, bw(G): minimum size of a bisection of G.
- Find bw(*G*).

Motivation

Wide range on applications:

- Applied mathematics.
- Computer science.
- Statistical physics.

History

A much studied problem.

- NP-complete for general graphs (Garey, Johnson, Stockmeyer, 1976).
- NP-complete for regular graphs (Bui, Chaudhuri, Leighton, Sisper, 1987).
- Lower bounds for random 3-regular graphs:
 - $n/11 \approx 0.0909n$ (Bollobás, 1984).
 - $10n/99 \approx 0.10101n$ (Kostochka and Melnikov, 1993).

History

Upper bounds are more abundant.

- n/4 + o(n) for an arbitrary 3-regular graph (Kostochka and Melnikov, 1992).
- n/6 for an arbitrary large enough 3-regular graph (Monien and Preis, 2001).
- 0.1740n for a random 3-regular graph (Díaz, Do, Serna and Wormald, 2003). Weaker bound, but more general paper. Easier algorithmic approach.
- 0.16226*n* for a random 3-regular graph (Lyons, 2017).

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between 0.10329n and 0.13983n asymptotically almost surely.

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between 0.10329n and 0.13983n asymptotically almost surely.

Main ideas of the proof:

Lower bound:

- precise structural characterisation of a minimum bisection,
- partially regroup these "special" bisections according to the graph they originate from,
- bound from above the number of graphs containing a "special" bisection of given size.

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between 0.10329n and 0.13983n asymptotically almost surely.

Main ideas of the proof:

Upper bound:

- local limit theory ensures convergence to the 3-regular tree T_3 ,
- deduce convergence of the " λ -Gaussian wave" on $G_3(n)$ to the " λ -Gaussian wave" on T_3 ,
- based on a well-chosen λ , find bisections of small size in $G_3(n)$.

Minimum bisection of random 3-regular graphs

Introduction

The lower bound

The upper bound

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.

Figure: G. Zamora-López, PhD thesis.

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.
- This model produces a multigraph in general.
- Simple graph is sampled with probability, bounded away from 0 and 1 as $n \to +\infty$.

Winning sets

- Fix 3-regular graph G and a cut (V_1, V_2) .
- Let $S \subseteq V_i$, $i \in \{1, 2\}$.
- For $\ell \geq 0$, S is ℓ -winning if

$$|(V_i \setminus S, V_{3-i} \cup S)| = |(V_1, V_2)| - \ell.$$

Winning sets

- Fix 3-regular graph G and a cut (V_1, V_2) .
- Let $S \subseteq V_i$, $i \in \{1, 2\}$.
- For $\ell \geq 0$, S is ℓ -winning if

$$|(V_i \setminus S, V_{3-i} \cup S)| = |(V_1, V_2)| - \ell.$$

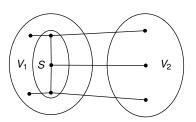


Figure: Here *S* is a 1—winning set.

Winning sets

- Fix 3-regular graph G and a cut (V_1, V_2) .
- Let $S \subseteq V_i$, $i \in \{1, 2\}$.
- For $\ell \geq 0$, S is ℓ -winning if

$$|(V_i \setminus S, V_{3-i} \cup S)| = |(V_1, V_2)| - \ell.$$

• Switching winning sets S, S' with |S| = |S'| and no edges between S and S' preserves the size of the parts and does not increase the cut.

Improvement

- Fix 3-regular graph G and a bisection (V_1, V_2) .
- Let $S_1 \subseteq V_1$, $S_2 \subseteq V_2$ such that

$$|(V_1, V_2)| > |(S_2 \cup (V_1 \setminus S_1), S_1 \cup (V_2 \setminus S_2))|.$$

• Improvement of (V_1, V_2) : operation of switching S_1 and S_2 .

Improvements and minimum bisections

No minimum bisection admits an improvement!

- Switching winning sets S, S' with |S| = |S'|, not both indifferent and without edges between S and S', leads to an improvement.
- This gives information on the structure of the parts in a minimum bisection!

Typical graphs

A 3-regular graph G is typical if:

- bw(G) $\geq n/10$, and
- there are at most log *n* vertices in cycles of length at most 20 in *G*.

Typical graphs

A 3-regular graph G is typical if:

- bw(G) $\geq n/10$, and
- there are at most log *n* vertices in cycles of length at most 20 in *G*.

Almost all 3-regular graphs are typical.

Goal: bound from above the number of minimum bisections of typical 3-regular graphs of size βn , for any $\beta \geq 0.1$.

2-core of a graph: the (unique) largest subgraph in which every vertex is of degree at least two.

2-core of a graph: the (unique) largest subgraph in which every vertex is of degree at least two.

Figure: Left figure: a graph, right figure: its 2-core

Lemma

Let (V_1, V_2) be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i = 1, 2, |G[V_i]| - |C_2(G[V_i])| \le 4$.

Lemma

Let (V_1, V_2) be a minimum bisection of size β n of a typical 3-regular graph G. Then, for both $i = 1, 2, |G[V_i]| - |C_2(G[V_i])| \le 4$.

Sketch of proof.

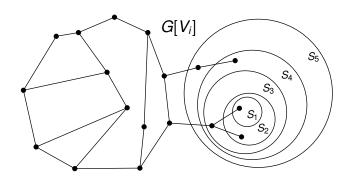
We argue by contradiction. We find many paths $v_0 \dots v_k$ in $G[V_{3-i}]$, for some $k \ge 5$, such that

$$\deg_{G[V_{3-i}]}(v_0) \leq 2, \deg_{G[V_{3-i}]}(v_k) \leq 2.$$

Exchanging one of them with the set $G[V_i] \setminus C_2(G[V_i])$ would lead to an improvement.

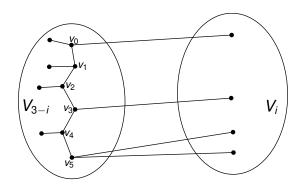
Lemma

Let (V_1, V_2) be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i = 1, 2, |G[V_i]| - |C_2(G[V_i])| \le 4$.



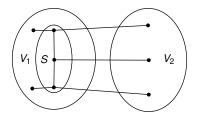
Lemma

Let (V_1, V_2) be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i = 1, 2, |G[V_i]| - |C_2(G[V_i])| \le 4$.



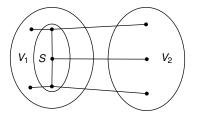
Step 2: 1-winning subgraphs

Question: Could there be many sets like S in V_1 ?



Step 2: 1-winning subgraphs

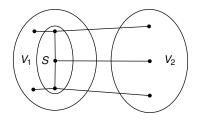
Question: Could there be many sets like S in V_1 ?



Answer: There are very few of these if there are a lot of neighbours in $G[V_2]$ of vertices of degree two.

Step 2: 1-winning subgraphs

Question: Could there be many sets like S in V_1 ?



Answer: There are very few of these if there are a lot of neighbours in $G[V_2]$ of vertices of degree two.

Two cases:

- There are at most o(n) pairs of neighbours of degree two in $G[V_2]$.
- There is at most one path like S in $G[V_2]$ (parity constraints).

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

First case: count bisections of size βn so that almost every edge in $G[V_2]_c$ (the contracted 3-regular graph) is subdivided only once.

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

First case: count bisections of size βn so that almost every edge in $G[V_2]_c$ (the contracted 3-regular graph) is subdivided only once.

First moment method: only a negligible proportion of all 3-regular graphs admit such a bisection of size $\beta n \leq 0.1069n$.

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

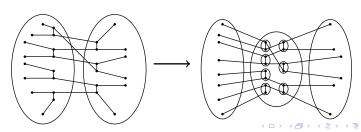
Second case: count bisections of size βn so that at most one winning path appears in $G[V_1]$ and in $G[V_2]$.

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Second case: count bisections of size βn so that at most one winning path appears in $G[V_1]$ and in $G[V_2]$.

New idea: regroup "special" bisections of second type according to the graph these come from.



Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Second case: count bisections of size βn so that at most one winning path appears in $G[V_1]$ and in $G[V_2]$.

First moment method: only a negligible proportion of all 3-regular graphs admit such a bisection of size $\beta n \leq 0.103295n$.

Minimum bisection of random 3-regular graphs

Introduction

2 The lower bound

The upper bound

Local limit theory

A uniformly rooted graph (G, ρ) is a finite graph with a root, chosen uniformly at random. A sequence of uniformly rooted graphs $(G_n, \rho_n)_{n\geq 1}$ converges locally if for every $r\geq 1$,

$$\lim_{n\to+\infty}\mathbb{P}(B_{G_n}(\rho_n,r)=(G,\rho))$$

for every rooted graph (G, ρ) .

Local limit theory

A uniformly rooted graph (G, ρ) is a finite graph with a root, chosen uniformly at random. A sequence of uniformly rooted graphs $(G_n, \rho_n)_{n\geq 1}$ converges locally if for every $r\geq 1$,

$$\lim_{n\to+\infty}\mathbb{P}(B_{G_n}(\rho_n,r)=(G,\rho))$$

for every rooted graph (G, ρ) .

The limit measure of $(B_{G_n}(\rho_n,r))_{n\geq 1}$ is often abusively identified with a graph G_{∞} . Example: the neighbourhood of a typical vertex in $G_3(n)$ contains no cycle of constant length. Therefore, $(G_3(n))_{n\geq 1}$ converges to the 3-regular tree T_3 .

Factor of iid process

Given a graph G, assign a family $(Z_{\nu})_{\nu \in V(G)}$ of iid stardard normal random variables to the vertices of G.

Factor of iid process

Given a graph G, assign a family $(Z_{\nu})_{\nu \in V(G)}$ of iid stardard normal random variables to the vertices of G.

A factor of iid process on G is a family of random variables $(X_v)_{v \in G}$ such that

- for every $v \in V(G)$, X_v is a measurable function of $(Z_v)_{v \in V(G)}$, and
- the joint distribution of the family $(X_v)_{v \in V(G)}$ is invariant under the action of any automorphism on V(G).

Factor of iid process

Given a graph G, assign a family $(Z_{\nu})_{\nu \in V(G)}$ of iid stardard normal random variables to the vertices of G.

A factor of iid process on G is a family of random variables $(X_v)_{v \in G}$ such that

- for every $v \in V(G)$, X_v is a measurable function of $(Z_v)_{v \in V(G)}$, and
- the joint distribution of the family $(X_v)_{v \in V(G)}$ is invariant under the action of any automorphism on V(G).

 $(X_{v})_{v \in V(G)}$ is a linear factor of iid process on G if there exist $\alpha_{0}, \alpha_{1}, \ldots$ such that $X_{v} = \sum_{u \in V(G)} \alpha_{d_{G}(v,u)} Z_{u}$ for all $v \in V(G)$.

A collection of random variables $(Y_v)_{v \in V(G)}$ a Gaussian process on G if (Y_v) are jointly Gaussian and Y_v is centered for every $v \in V(G)$.

A collection of random variables $(Y_{\nu})_{\nu \in V(G)}$ a Gaussian process on G if (Y_{ν}) are jointly Gaussian and Y_{ν} is centered for every $\nu \in V(G)$.

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 3$ there exists a non-trivial invariant Gaussian process $(Y_v)_{v \in V(\mathcal{T}_3)}$ on \mathcal{T}_3 such that (with probability 1) for every vertex v

$$\sum_{u\in N(v)}Y_u=\lambda Y_v.$$

Moreover, the joint distribution of such a process is unique under the additional condition that, for every $v \in V(T_3)$, the variance of Y_v is 1. We refer to this process as the Gaussian wave function corresponding to the eigenvalue λ .

A collection of random variables $(Y_{\nu})_{\nu \in V(G)}$ a Gaussian process on G if (Y_{ν}) are jointly Gaussian and Y_{ν} is centered for every $\nu \in V(G)$.

Let $(G_n)_{n\geq 1}$ converge locally to T_3 .

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 2\sqrt{2}$ there exists a sequence of linear factors of iid processes $(X_v^{(n)})_{v \in V(G_n)}$ that converges in distribution to the Gaussian wave function $(Y_v)_{v \in V(T_3)}$ corresponding to the eigenvalue λ .

A collection of random variables $(Y_{\nu})_{\nu \in V(G)}$ a Gaussian process on G if (Y_{ν}) are jointly Gaussian and Y_{ν} is centered for every $\nu \in V(G)$.

Let $(G_n)_{n\geq 1}$ converge locally to T_3 .

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 2\sqrt{2}$ there exists a sequence of linear factors of iid processes $(X_v^{(n)})_{v \in V(G_n)}$ that converges in distribution to the Gaussian wave function $(Y_v)_{v \in V(T_3)}$ corresponding to the eigenvalue λ .

Idea (Lyons, 2017): Form a cut of the vertices of $G_3(n)$ according to the signs of $(X_V)_{V \in V(G_3(n))}$.

Building upon Lyons' idea

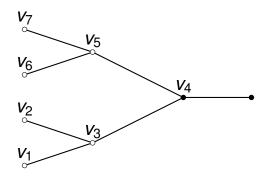
Idea (Lyons, 2017): Form a cut of the vertices of $G_3(n)$ according to the signs of $(X_v)_{v \in V(G_3(n))}$.

Our contribution: study the asymptotic frequency of particular configurations and correct the non-optimal random choice locally.

Building upon Lyons' idea

Idea (Lyons, 2017): Form a cut of the vertices of $G_3(n)$ according to the signs of $(X_v)_{v \in V(G_3(n))}$.

Our contribution: study the asymptotic frequency of particular configurations and correct the non-optimal random choice locally.



Exact results

- A study of the above structure leads to an improved upper bound of 0.1398n on the bisection width.
- Studying longer chains of repeating black and white vertices is out of reach for us due to numerical difficulties. Monte-Carlo simulations allow us to make a non-rigorous prediction of an upper bound of 0.1303n.

Thank you for your attention!

