Minimum bisection of random 3-regular graphs Lyuben Lichev

Joint work with Dieter Mitsche

Minimum bisection of random 3-regular graphs

(1) Introduction
(2) The lower bound
(3) The upper bound

The problem

- Graph $G(V, E),|V|$ being even.
- Bisection of G : partition $\left(V_{1}, V_{2}\right)$ of V with $\left|V_{1}\right|=\left|V_{2}\right|$.
- Size of a bisection $\left(V_{1}, V_{2}\right)$: number of edges crossing.
- Bisection width of $G, \operatorname{bw}(G)$: minimum size of a bisection of G.
- Find $\mathrm{bw}(G)$.

Motivation

Wide range on applications:

- Applied mathematics.
- Computer science.
- Statistical physics.

History

A much studied problem.

- NP-complete for general graphs (Garey, Johnson, Stockmeyer, 1976).
- NP-complete for regular graphs (Bui, Chaudhuri, Leighton, Sisper, 1987).
- Lower bounds for random 3-regular graphs:
- $n / 11 \approx 0.0909 n$ (Bollobás, 1984).
- $10 n / 99 \approx 0.10101 n$ (Kostochka and Melnikov, 1993).

History

Upper bounds are more abundant.

- $n / 4+o(n)$ for an arbitrary 3-regular graph (Kostochka and Melnikov, 1992).
- $n / 6$ for an arbitrary large enough 3-regular graph (Monien and Preis, 2001).
- $0.1740 n$ for a random 3-regular graph (Díaz, Do, Serna and Wormald, 2003). Weaker bound, but more general paper. Easier algorithmic approach.
- $0.16226 n$ for a random 3-regular graph (Lyons, 2017).

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between $0.10329 n$ and $0.13983 n$ asymptotically almost surely.

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between $0.10329 n$ and $0.13983 n$ asymptotically almost surely.

Main ideas of the proof:
Lower bound:

- precise structural characterisation of a minimum bisection,
- partially regroup these "special" bisections according to the graph they originate from,
- bound from above the number of graphs containing a "special" bisection of given size.

Our contribution

Theorem (L. and Mitsche, 2020)

The bisection width of the random 3-regular graph is between $0.10329 n$ and $0.13983 n$ asymptotically almost surely.

Main ideas of the proof:
Upper bound:

- local limit theory ensures convergence to the 3-regular tree T_{3},
- deduce convergence of the " λ-Gaussian wave" on $G_{3}(n)$ to the " λ-Gaussian wave" on T_{3},
- based on a well-chosen λ, find bisections of small size in $G_{3}(n)$.

Minimum bisection of random 3-regular graphs

(3) The upper bound

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.

Figure: G. Zamora-López, PhD thesis.

The probability space

- The configuration model.
- A set of vertices V.
- A set of half-edges, attached to the vertices.
- Random perfect matching of the half-edges.
- This model produces a multigraph in general.
- Simple graph is sampled with probability, bounded away from 0 and 1 as $n \rightarrow+\infty$.

Winning sets

- Fix 3-regular graph G and a cut $\left(V_{1}, V_{2}\right)$.
- Let $S \subseteq V_{i}, i \in\{1,2\}$.
- For $\ell \geq 0, S$ is ℓ-winning if

$$
\left|\left(V_{i} \backslash S, V_{3-i} \cup S\right)\right|=\left|\left(V_{1}, V_{2}\right)\right|-\ell
$$

Winning sets

- Fix 3-regular graph G and a cut $\left(V_{1}, V_{2}\right)$.
- Let $S \subseteq V_{i}, i \in\{1,2\}$.
- For $\ell \geq 0, S$ is ℓ-winning if

$$
\left|\left(V_{i} \backslash S, V_{3-i} \cup S\right)\right|=\left|\left(V_{1}, V_{2}\right)\right|-\ell
$$

Figure: Here S is a 1 -winning set.

Winning sets

- Fix 3-regular graph G and a cut $\left(V_{1}, V_{2}\right)$.
- Let $S \subseteq V_{i}, i \in\{1,2\}$.
- For $\ell \geq 0, S$ is ℓ-winning if

$$
\left|\left(V_{i} \backslash S, V_{3-i} \cup S\right)\right|=\left|\left(V_{1}, V_{2}\right)\right|-\ell
$$

- Switching winning sets S, S^{\prime} with $|S|=\left|S^{\prime}\right|$ and no edges between S and S^{\prime} preserves the size of the parts and does not increase the cut.

Improvement

- Fix 3-regular graph G and a bisection $\left(V_{1}, V_{2}\right)$.
- Let $S_{1} \subseteq V_{1}, S_{2} \subseteq V_{2}$ such that

$$
\left|\left(V_{1}, V_{2}\right)\right|>\left|\left(S_{2} \cup\left(V_{1} \backslash S_{1}\right), S_{1} \cup\left(V_{2} \backslash S_{2}\right)\right)\right|
$$

- Improvement of $\left(V_{1}, V_{2}\right)$: operation of switching S_{1} and S_{2}.

Improvements and minimum bisections

- No minimum bisection admits an improvement!
- Switching winning sets S, S^{\prime} with $|S|=\left|S^{\prime}\right|$, not both indifferent (i.e. not changing the size of the cut) and without edges between S and S^{\prime}, leads to an improvement.
- This gives information on the structure of the parts in a minimum bisection!

Typical graphs

A 3-regular graph G is typical if:

- $\operatorname{bw}(G) \geq n / 10$, and
- there are at most $\log n$ vertices in cycles of length at most 20 in G.

Typical graphs

A 3-regular graph G is typical if:

- $\operatorname{bw}(G) \geq n / 10$, and
- there are at most $\log n$ vertices in cycles of length at most 20 in G.

Almost all 3-regular graphs are typical.
Goal: bound from above the number of minimum bisections of typical 3 -regular graphs of size βn, for any $\beta \geq 0.1$.

Step 1: 2-cores

2-core of a graph: the (unique) largest subgraph in which every vertex is of degree at least two.

Step 1: 2-cores

2-core of a graph: the (unique) largest subgraph in which every vertex is of degree at least two.

Figure: Left figure: a graph, right figure: its 2 -core

Step 1: 2-cores

Lemma

Let $\left(V_{1}, V_{2}\right)$ be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i=1,2,\left|G\left[V_{i}\right]\right|-\left|C_{2}\left(G\left[V_{i}\right]\right)\right| \leq 4$.

Step 1: 2-cores

Lemma

Let $\left(V_{1}, V_{2}\right)$ be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i=1,2,\left|G\left[V_{i}\right]\right|-\left|C_{2}\left(G\left[V_{i}\right]\right)\right| \leq 4$.

Sketch of proof.

We argue by contradiction. We find many paths $v_{0} \ldots v_{k}$ in $G\left[V_{3-i}\right]$, for some $k \leq 4$, such that

$$
\operatorname{deg}_{G\left[V_{3-i}\right]}\left(v_{0}\right) \leq 2, \operatorname{deg}_{G\left[V_{3-i}\right]}\left(v_{k}\right) \leq 2
$$

Exchanging one of them with the set $G\left[V_{i}\right] \backslash C_{2}\left(G\left[V_{i}\right]\right)$ would lead to an improvement.

Step 1: 2-cores

Lemma

Let $\left(V_{1}, V_{2}\right)$ be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i=1,2,\left|G\left[V_{i}\right]\right|-\left|C_{2}\left(G\left[V_{i}\right]\right)\right| \leq 4$.

Step 1: 2-cores

Lemma

Let $\left(V_{1}, V_{2}\right)$ be a minimum bisection of size βn of a typical 3-regular graph G. Then, for both $i=1,2,\left|G\left[V_{i}\right]\right|-\left|C_{2}\left(G\left[V_{i}\right]\right)\right| \leq 4$.

Step 2: 1-winning subgraphs

Question: Could there be many sets like S in V_{1} ?

Step 2: 1-winning subgraphs

Question: Could there be many sets like S in V_{1} ?

Answer: There are very few of these if there are a lot of neighbours in $G\left[V_{2}\right]$ of vertices of degree two.

Step 2: 1-winning subgraphs

Question: Could there be many sets like S in V_{1} ?

Answer: There are very few of these if there are a lot of neighbours in $G\left[V_{2}\right]$ of vertices of degree two.

Two cases:

- There are at most $o(n)$ pairs of neighbours of degree two in $G\left[V_{2}\right]$.
- There is at most one path like S in $G\left[V_{2}\right]$ (parity constraints).

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

First case: count bisections of size βn so that almost every edge in $G\left[V_{2}\right]_{c}$ (the contracted 3-regular graph) is subdivided only once.

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

First case: count bisections of size βn so that almost every edge in $G\left[V_{2}\right]_{c}$ (the contracted 3-regular graph) is subdivided only once.

First moment method: only a negligible proportion of all 3-regular graphs admit such a bisection of size $\beta n \leq 0.1069 n$.

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Second case: count bisections of size βn so that at most one winning path appears in $G\left[V_{1}\right]$ and in $G\left[V_{2}\right]$.

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Second case: count bisections of size βn so that at most one winning path appears in $G\left[V_{1}\right]$ and in $G\left[V_{2}\right]$.

New idea: regroup "special" bisections of second type according to the graph these come from.

Counting "special" bisections

Observation

2-cores of graphs with maximum degree three are subdivisions of 3-regular graphs.

Second case: count bisections of size βn so that at most one winning path appears in $G\left[V_{1}\right]$ and in $G\left[V_{2}\right]$.

First moment method: only a negligible proportion of all 3-regular graphs admit such a bisection of size $\beta n \leq 0.103295 n$.

Minimum bisection of random 3-regular graphs

(2) The lower bound
(3) The upper bound

Local limit theory

A uniformly rooted graph (G, ρ) is a finite graph with a root, chosen uniformly at random. A sequence of uniformly rooted graphs $\left(G_{n}, \rho_{n}\right)_{n \geq 1}$ converges locally if for every $r \geq 1$,

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(B_{G_{n}}\left(\rho_{n}, r\right)=(G, \rho)\right)
$$

for every rooted graph (G, ρ).

Local limit theory

A uniformly rooted graph (G, ρ) is a finite graph with a root, chosen uniformly at random. A sequence of uniformly rooted graphs $\left(G_{n}, \rho_{n}\right)_{n \geq 1}$ converges locally if for every $r \geq 1$,

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(B_{G_{n}}\left(\rho_{n}, r\right)=(G, \rho)\right)
$$

for every rooted graph (G, ρ).

The limit measure of $\left(B_{G_{n}}\left(\rho_{n}, r\right)\right)_{n \geq 1}$ is often abusively identified with a graph G_{∞}. Example: the neighbourhood of a typical vertex in $G_{3}(n)$ contains no cycle of constant length. Therefore, $\left(G_{3}(n)\right)_{n \geq 1}$ converges to the 3-regular tree T_{3}.

Factor of iid process

Given a graph G, assign a family $\left(Z_{V}\right)_{v \in V(G)}$ of iid stardard normal random variables to the vertices of G.

Factor of iid process

Given a graph G, assign a family $\left(Z_{V}\right)_{v \in V(G)}$ of iid stardard normal random variables to the vertices of G.

A factor of iid process on G is a family of random variables $\left(X_{v}\right)_{v \in G}$ such that

- for every $v \in V(G), X_{v}$ is a measurable function of $\left(Z_{V}\right)_{v \in V(G)}$, and
- the joint distribution of the family $\left(X_{V}\right)_{v \in V(G)}$ is invariant under the action of any automorphism on $V(G)$.

Factor of iid process

Given a graph G, assign a family $\left(Z_{V}\right)_{v \in V(G)}$ of iid stardard normal random variables to the vertices of G.

A factor of iid process on G is a family of random variables $\left(X_{v}\right)_{v \in G}$ such that

- for every $v \in V(G), X_{v}$ is a measurable function of $\left(Z_{v}\right)_{v \in V(G)}$, and
- the joint distribution of the family $\left(X_{V}\right)_{v \in V(G)}$ is invariant under the action of any automorphism on $V(G)$.
$\left(X_{V}\right)_{v \in V(G)}$ is a linear factor of iid process on G if there exist $\alpha_{0}, \alpha_{1}, \ldots$ such that $X_{v}=\sum_{u \in V(G)} \alpha_{d_{G}(v, u)} Z_{u}$ for all $v \in V(G)$.

Gaussian processes

A collection of random variables $\left(Y_{v}\right)_{v \in V(G)}$ a Gaussian process on G if $\left(Y_{v}\right)$ are jointly Gaussian and Y_{v} is centered for every $v \in V(G)$.

Gaussian processes

A collection of random variables $\left(Y_{v}\right)_{v \in V(G)}$ a Gaussian process on G if $\left(Y_{v}\right)$ are jointly Gaussian and Y_{v} is centered for every $v \in V(G)$.

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 3$ there exists a non-trivial invariant Gaussian process $\left(Y_{v}\right)_{v \in V\left(T_{3}\right)}$ on T_{3} such that (with probability 1) for every vertex v

$$
\sum_{u \in N(v)} Y_{u}=\lambda Y_{v}
$$

Moreover, the joint distribution of such a process is unique under the additional condition that, for every $v \in V\left(T_{3}\right)$, the variance of Y_{v} is 1 . We refer to this process as the Gaussian wave function corresponding to the eigenvalue λ.

Gaussian processes

A collection of random variables $\left(Y_{v}\right)_{v \in V(G)}$ a Gaussian process on G if $\left(Y_{v}\right)$ are jointly Gaussian and Y_{v} is centered for every $v \in V(G)$.

Let $\left(G_{n}\right)_{n \geq 1}$ converge locally to T_{3}.

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 2 \sqrt{2}$ there exists a sequence of linear factors of iid processes $\left(X_{v}^{(n)}\right)_{v \in V\left(G_{n}\right)}$ that converges in distribution to the Gaussian wave function $\left(Y_{v}\right)_{v \in V\left(T_{3}\right)}$ corresponding to the eigenvalue λ.

Gaussian processes

A collection of random variables $\left(Y_{v}\right)_{v \in V(G)}$ a Gaussian process on G if $\left(Y_{v}\right)$ are jointly Gaussian and Y_{v} is centered for every $v \in V(G)$.

Let $\left(G_{n}\right)_{n \geq 1}$ converge locally to T_{3}.

Theorem (Czóka, Gerencsér, Harangi, Virág, 2008)

For any real number λ with $|\lambda| \leq 2 \sqrt{2}$ there exists a sequence of linear factors of iid processes $\left(X_{v}^{(n)}\right)_{v \in V\left(G_{n}\right)}$ that converges in distribution to the Gaussian wave function $\left(Y_{v}\right)_{v \in V\left(T_{3}\right)}$ corresponding to the eigenvalue λ.

Idea (Lyons, 2017): Form a cut of the vertices of $G_{3}(n)$ according to the signs of $\left(X_{V}\right)_{v \in V\left(G_{3}(n)\right)}$.

Building upon Lyons' idea

Idea (Lyons, 2017): Form a cut of the vertices of $G_{3}(n)$ according to the signs of $\left(X_{V}\right)_{v \in V\left(G_{3}(n)\right)}$.

Our contribution: study the asymptotic frequency of particular configurations and correct the non-optimal random choice locally.

Building upon Lyons' idea

Idea (Lyons, 2017): Form a cut of the vertices of $G_{3}(n)$ according to the signs of $\left(X_{V}\right)_{v \in V\left(G_{3}(n)\right)}$.

Our contribution: study the asymptotic frequency of particular configurations and correct the non-optimal random choice locally.

Exact results

- A study of the above structure leads to an improved upper bound of $0.1398 n$ on the bisection width.
- Studying longer chains of repeating black and white vertices is out of reach for us due to numerical difficulties. Monte-Carlo simulations allow us to make a non-rigorous prediction of an upper bound of $0.1303 n$.

