
PROBLEM SESSION

1ST GAPCOMB WORKSHOP
JUNE 2019
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(1) (Simeon Ball) A conjecture concerning quadrics

Let PG(k − 1,F) denote the (k − 1)-dimensional projective space over the field
F. If U is a subspace of quadrics defined on PG(k − 1,F), let V (U) denote the set
of points of PG(k − 1,F) which is the intersection of all the quadrics in U .

The following theorem is due to Castelnuovo from 1889.

Theorem 1. Let X be a set of 11 points of PG(4,F) any five of which span the
whole space. Let U be the subspace of quadrics which are zero on X. If dimU > 6
then the projection of V (U) from any 2 points of V (U) is contained in a conic.

In 1894 Fano proved the following theorem

Theorem 2. Let X be a set of 13 points of PG(4,F) such that the dimension of
the space of quadrics which are zero on a subset of X depends only on the size of
the subset and is independent of the subset. Let U be the subspace of quadrics which
are zero on X. If dimU > 5 then X is contained in a one-dimensional algebraic
variety of degree at most 5.

I think the following is true, which would be a strengthening of Fano’s theorem.

Conjecture 3. Let X be a set of 13 points of PG(4,F) any five of which span the
whole space. Let U be the subspace of quadrics which are zero on X. If dimU > 5
then the projection of V (U) from any point of V (U) is contained in the intersection
of two linearly independent quadrics.

Here is a linear algebra proof of Theorem ??.

Proof. After a suitable change of basis, we can suppose that the canonical basis
{e1, . . . , ek} ⊆ X and let V = X \ {e1, . . . , ek}.

Let C be a basis for a 6-dimensional subspace of the space of quadrics that are
zero on X.

Let M = (mij) be the 6 × 6 matrix whose rows are indexed by the elements of
C, whose first 3 columns are indexed X1, . . . , X3 and whose next 3 columns are
indexed by XiXj , where i, j ∈ {1, . . . , 3} and i < j. The row-column entry, where
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the row is indexed by the quadric

q(X) =
∑

16i<j65

aijXiXj

is defined as
ai4X4 + ai5X5

for the first i = 1, . . . , 3 columns and aij for the remaining columns.
Let x = (x1, . . . , x5) be a point in the intersection of all the quadrics in C. Then

M


x1

x2

x3

x1x2

x1x3

x2x3

 = vx4x5,

where v is the vector whose coordinates are indexed by the quadrics in C and whose
coordinate indexed by q(X) has entry −a45.

We can solve for xi (i = 1, 2, 3) and xixj (i, j = 1, 2, 3, i < j) by Cramer’s
method, defining Mi to be the matrix obtained by from M by replacing the column
indexed by xi by v and Mij to be the matrix obtained by from M by replacing the
column indexed by xixj by v.

Thus,
(det M)xi = x4x5 det(Mi)

and
(det M)xixj = x4x5 det(Mij).

If det(M)(x) = 0, for some x ∈ V , then there is a linear combination of the
quadrics in C which is a quadric

(x5X4 − x4X5)(d1X1 + · · ·+ d3X3) = d4X4X5,

for some d1, . . . , d4 ∈ F. Since x is a zero of this quadric and x4x5 6= 0 we have
that d4 = 0, which implies that in the space of quadrics spanned by C there is
a hyperplane pair (reducible) quadric. However, the set X is not contained in a
hyperplane pair quadric, which is a contradiction. Observe that this implies that
det(M)(X4, X5) is not identically zero.

Similarly, if det(M)(X4, 0) = 0 then there is a linear combination of the quadrics
in C which is a quadric

X5(d1X1 + · · ·+ d3X3 + d4X4),

for some d1, . . . , d4 ∈ F, again contradicting the fact that C does not contain a
hyperplane pair quadric.

As a homogeneous polynomial in X = (X4, X5), the determinants are non-zero
and have degree

deg(det M) = 3 deg(det Mi) = 4 and deg(det Mij) = 3.
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Note that we have also proved that the degree of det M in X4 is also 3.
From this we deduce that, for x in the intersection of all the quadrics in C, x is

a zero of

X4X5 det(Mi) det(Mj)− det(M) det(Mij),

which is a homogeneous polynomial in (X4, X5) of degree 6.

This polynomial has a zero (X4, X5) = (a4, a5) for every a = (a1, . . . , a5) ∈ V .
Assuming |X| > 12, we have that |V | > 7. Moreover, the pairs (a4, a5) are distinct
for distinct points in V . Therefore, the polynomial above is identically zero.

We have already proven that det(M) 6≡ 0 and gcd(X4X5,det(M)) = 1.
Therefore, for one of i or j, i = 3 say the degree of r = gcd(Mi,det(M)) is 2 and

dividing out by this

(det M)

r
x3 = x4x5

det(M3)

r

is a conic degenerate at {e1, e2}, which is in U . Thus, the projection of V (U)
from {e1, e2} is contained in a conic. Likewise, at least one of the projections from
either {e1, e3} or {e2, e3} is also contained in a conic. Simlarly at least one of the
projections from either {e1, e4} or {e2, e4} is also contained in a conic. So many
projections from two points onto a conic implies that V (U) is contained in a normal
rational curve and so the projection of X from any 2 points of X is contained in a
conic.

�

To prove Conjecture ?? in the same way we get a 5×6 matrix M and a system of
equations we can solve using Gaussian elimination. It gets more complicated but
the idea is to reduce everything again to a polynomial in just X4 and X5 which
doesn’t have too high a degree. Assuming X to be large enough this polynomial
will be identically zero. From there, using the divisions that this implies prove that
this implies a factor in the larger degree curves constructed in X3, X4 and X5.

(2) (Guillem Perarnau) Can colourings be far apart from each other?

Let G be a graph on n vertices and maximum degree ∆. Let Ωk(G) be the set
of proper k-colourings of G. Define the recolouring graph Ck(G) with vertex set
Ωk(G) where two colourings are adjacent if they only differ at exactly one vertex.
The structural graph properties of Ck(G) are key to understand the performance
of sampling algorithms for colourings (e.g. Glauber dynamics).

For k ≥ ∆ + 2, it is easy to show that Ck(G) is connected and the proof implies
that diam(Ck(G)) = O(n), where constants depending on ∆ are hidden in the
asymptotic notation. Obviously, diam(Ck(G)) ≥ n for any graph G, as there exist
two colourings that do not agree on any vertex (take a colouring and permute
cyclically the colours).
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So let us focus on the case k = ∆ + 1. In this case, C∆+1(G) (from now on just
C) may not be connected due to the so called frozen colourings. Johnson, Feghali
and Paulusma showed that C is composed of a single non-trivial component C0 and
many isolated colourings. Their proof implies that diam(C0) = O(n2).

Question 4 (Bonamy, Bousquet, P.). For ∆ ≥ 3, does there exist c∆ and a se-
quence of ∆-bounded-degree graphs (Gn)n≥1 where Gn has n vertices such that
diam(C0) ≥ c∆n

2?

For ∆ = 2, the answer is yes and the proof is simple and very nice, I’ll show it
to you!

(3) (Guillem Perarnau) Rough enumeration of planar-like graphs.

Fix an integer d ≥ 1. Let Gd,n be the class of (d+1)-regular (d+1)-edge-coloured
graphs on {1, . . . , n} such that the graph induced by any triplet of colours is planar.

We are interested in rough estimates of Gd,n = |Gd,n|, in particular we want
to determine its factorial growth rate. This quantity is related to the number of
triangulated d-manifolds, which are central in the study of quantum gravity.

Define

βd = lim sup
n→∞

log(Gn,d/n!)

n log n

Clearly βd ≥ 0. As there are at most nn planar 3-edge-coloured graphs, we have
βd ≤ d/3 − 1, Moreover, βd is increasing in d. Together with Chapuy, we proved
β3 = 1/6 and for d ≥ 4

1

6
≤ βd ≤

d− 2

6
.

Question 5 (Chapuy, P.). What is the correct asymptotic behaviour of βd?

(4) Juanjo Rué Sums and Differences

The following problem fits in the area of additive combinatorics. Let A be a set
of positive integers. We denote by A(n) the subset of elements in A smaller or equal
than n. We denote by A+A = {a+a′ : a, a′ ∈ A} and A−A = {a−a′ : a, a′ ∈ A}.
The main general problem is to study the cardinality of A + A with respect to
|A−A|.

In fact, it is proven that a positive proportion of sets in [n] satisfies the three
properties, namely |A + A| > |A − A|, |A + A| < |A − A| and |A + A| = |A − A|.
Results for random sets in [n] are also obtained. We want to go through this in a
more precise way:

Question 1: study (if any) the existence of limiting distributions for |A + A|
and |A−A| in different random models.
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Also, many interesting questions can be stated in the infinite setting:

Question 2: is it possible to build an infinite set A such that for infinitely many
n, |A(n) +A(n)| > |A(n)−A(n)|?

(5) (Oriol Serra) The Dicks–Hamidoune–Ivanov conjecture

Given finite sets A,B in a group its Minkowski product is AB = {ab : a ∈
A, b ∈ B}. In torsion–free groups and in finite groups of prime order the Cauchy–
Davenport inequality

|AB| ≥ |A|+ |B| − 1,

holds. In linearly ordered groups there is always one element which can be written in
a unique way in AB. Disproving a conjecture by Kemperman, nontrivial examples
in general groups where there is no element with unique expression in AB where
shown to exist. This brings the question of giving a lower bound for the number of
elements which can be written in at least t ways in AB. We denote by

A ·i B = {g ∈ G : rA,B(g) ≥ i},

where rA,B(g) denotes the number of representations of g in AB (as an ordered
product in the nonabeleian case). We abbreviate A ·1 B = AB. Pollard proved

Theorem 6 (Pollard). Let A,B be finite subsets of Z/pZ. For each positive integer
r,

|A+B|+ |A+2 B|+ · · ·+ |A+ ·rB| ≥ r ·min{p, |A|+ |B| − r}.

Grynkiewicz extended the above theorem to general abelian groups (extending
the Theorem of Kneser) and Nazariewicz, O’Brien, O’Neill and Staples character-
ized the extremal sets for Pollards’ s theorem (which are essentially pairs of arith-
metic progressions with a common difference). Inspired by a problem by Dicks and
Ivanov, Hamidoune formulated the following conjecture.

Conjecture 7. Let A,B be finite subsets of a group G, |A|, |B| ≥ 2. Let H < G
be the largest subgroup such that A ·2 B contains a full coset of H. Then

|AB|+ |N2(A,B) ≥ 2(|A|+ |B| −max{2, |H|}.

Dicks–Ivanov proved that

|AB|+ |N2(A,B) ≥ 2 min{|A|+ |B| − 2, |H|},

where the minimum runs over all subgroups H < G such that |H| ≥ 3.
The result of Grynkiewicz proves the above conjecture for abelian groups. A

simpler proof was given by Hamidoune, which ‘only’ fails to extend to all groups
when |A ∩B| ≥ 2 and A ( AB
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(6) (Oriol Serra) Generating Random Latin Squares

The tight structure of Latin Squares has posed a problem related to random
generation of these objects. One of the first attempts was proposed by McKay and
Wormald and was followed by a Markov chain approach by Jacobson and Mattews
in the context of random generation of contingency tables.

In 2017 Dotan and Linial suggested a new simpler approach to the random gen-
eration of symmetric Latin squares by using a Metropolis algorithm. The authors
suggest several variations of the algorithms and describe some statistical behavior
for small values of n. The simplest procedure they suggest consists in generating
proper edge colorings of complete graphs Kn with n even (which provide symmetric
Latin Squares). Consider the space Cn of all colorings of the edges of Kn with n−1
colors. For each C ∈ C we denote by ai,x(C) the number of edges indicent with
x ∈ [n] colorred with i. Define a potential

φ(C) =
∑
x∈[n]

n−1∑
i=1

ax,i(C).

Therefore n(n − 1) ≤ φ(C) ≤ n(n − 1)2 and the lower bound holds if and only
if C is proper. Let Gn be the directed graph with vertex set Cn and a coloring
C is adjacent C ′ if C and C ′ they differ precisely on the color of one single edge
and φ(C ′) ≤ φ(C). Then a simple random walk on Gn is performed. The simplest
conjecture they pose is the following one.

Conjecture 8. The above random walk converges a.a.s. to a proper coloring.
Moreover the expected time of convergence is O(n4).

The first part of the conjecture amounts to proving that the graph Gn is strongly
connected. There are colorings such that all neighbours have the same potential
function, and the question is that such stable colorings can not form a connected
compoment. In her Master Thesis, Julia Calatayud proved the conjecture for n = 6
and n = 8. It looks that the answer should be positive.

(7) (Dimitrios Thillikos) Structure of the Connectivity Core Decomposition
Tree of a graph

Degree degeneracy. We define

δ(G) = min{degG(v) | v ∈ V (G)}
and we also define the degree-degeneracy of G as

δ∗(G) = max{δ(H) | H is a subgraph of G}.
Let d = δ∗(G). The (degree) core decomposition of G is the sequence C(G) =

{C0, . . . , Cd} where Ci is the vertex set of the i-core of G, defined as the maximal
subgraph H where δ(H) ≥ i.
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Connectivity degeneracy. Given a X ⊆ V (G) where 0 < |X| < |V (G)|, we set

cut(X) = |{{x, y} ∈ E(G) | x ∈ X and y ∈ V (G) \X}|.
Given a graph G, where |V (G)| ≥ 2,

λ(G) = min{cutG(X) | X ⊆ V (G) and 0 < |X| < |V (G)|},
while in the special case where |V (G)| ≤ 1, we set λ(G) = ∞. We define the
connectivity degeneracy of a graph G as

λ∗(G) = max{λ(H) | H is a subgraph of G}.
It is known that δ∗(G) ≤ λ∗(G) ≤ 2·δ∗(G). Both λ∗(G) and δ∗(G) can be computed
in polynomial time, however, only δ∗(G) has, so far, a linear time algorithm.
Connectivity core decomposition tree. The k-connectivity partition of G the parti-
tion Pk(G) = {X1, . . . , X`} of V (G) such that each Xi is a vertex maximal subset
of V (G) such that λ(G[Xi]) ≥ k. This partition is uniquely defined.

It also holds that if k ≥ k′ then Pk(G) is a refinement of Pk′(G). Let ` = λ∗(G).
Notice that P0(G) = {V (G)}, while Pd(G) consists of singletons consisting of all the
vertices of G. The connectivity core decomposition tree of G is a d+ 1-level rooted
tree TG where each level has as vertices the sets in Pk(G) for each k ∈ {0, . . . , d}
and where there is an edge from a set X ∈ Pi(G) to a set Y ∈ Pi+1 when Y ⊆ X.
Notice that the root of this tree is V (G) and the leaves are the singletons in Pd(G).

Question: Due to experiments on graphs emerging from real data sets, it appears
that TG is typically not far away from a path. Is there any theoretical base on this?
Or it is a particularity of the data sets?

(8) (Llúıs Vena) Maximal number of edge-disjoint triangles in a graph such
that no additional triangle is created.

The maximal configurations known come from sets free of 3 arithmetic progres-
sions.

If A is a set free of 3–AP in [n], then one can create a graph on [6n] vertices with
|A|n edge–disjoint triangles and where the total number of triangles is also |A|n.

This allows to show that the number of edges-disjoint triangles is at least from
the order |V |2−o(1).

Using the triangle removal lemma, one concludes that the upper bound is of the
similar type, but where the difference of the two little o’s is substantial.

Open problem: reduce the gap.
(have heard talking about it to Rödl)

(9) (Llúıs Vena) ‘Compactification’ of the set of sequences.

Let S = {f : N → R>0} be the set of sequences of real numbers.
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Consider the order < such that

f < g ⇔ lim
i→∞

f(i)/g(i) exists and is between 0 and 1

(think better as 0)
Does there exists a set A ⊂ S, totally ordered with respect to <, such that, for

any other s ∈ S, there exists an infinite set of indices I and a ∈ A such that

lim
i→∞,i∈I

s(i)/a(i) = 1

Ideally, one would like to be able to do this when s is an infinite subsequence as
well.
A should be a maximally, totally ordered set. Possibly one needs to assume other

axioms beyond ZFC, such as continuum hypothesis.

(10) (Enric Ventura) Is there an algorithm to compute the stable image of
an endomorphism of a free group ?

Discussion: Let F be a finitely generated free group and let g be an endomor-
phism of F , given by the images of a free basis of F . The stable image of g, denoted
Im(g∞), is defined as the intersection of Im(gn) for all n > 0. It is known that
this stable image is always finitely generated (in fact, with rank bounded by that
of F ). The problem consists on computing a free basis for Im(g∞) from the given
g.

One can easily compute recursively the Stallings graph (and so a free basis) for
Im(g), Im(g2), Im(g3), etc. And it is not difficult to see that the Stallings graph
for Im(g∞) is a subgraph of Im(gn) for some big enough n. What remains is to
be able to decide how tall must we go up this tower of graphs and, whence there,
how to choose the appropriate subgraph (out of the finitely many ones).

Inspecting the example a 7→ a2, b 7→ b, (with Im(g∞) =< b >), it seems that
the problem is about detecting which parts of the graph grow to infinite, and cut
them in finite time. Maybe the problem is related to the foillowing question: can
we define a dynamic notion of stable image including the points at infinity ? (in the
previous example, this extended stable image should be something like ”< b, a∞ >”.

The answer to this problem has a direct application: the computability of the
fixed subgroup of arbitrary endomorphisms (the corresponding problem for auto-
morphisms has been solved making strong use of train track techniques).


