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Abstract

The kth power Gk of a graph G = (V,E) is the graph whose vertex set is
V , and in which two distinct vertices are adjacent if and only if their
distance in G is at most k. In this talk we present various spectral
bounds for the k-independence number and k-chromatic number,
together with a method to optimize them.
In particular, such bounds are shown to be tight for some of the so-called
k-partially walk-regular, which can be seen as a generalization of
distance-regular graphs. In this case, the bounds are obtained via a new
family of polynomials obtained from the spectrum of a graph, called
minor polynomials. Moreover these results coincide with the Delsarte’s
linear programming bound and, in fact, the given bounds also apply also
for theLovász theta number θ, and the Shannon capacity of a graph Θ.
In some cases, our approach has the advantage of yielding closed
formulas and, so, allowing asymptotic analysis. In some cases, we use LP
and MILP to optimize the results.



1. Preliminaries and some previous work



Graphs and spectra

Let G = (V,E) be a graph with n = |V | vertices, m = |E| edges, and
adjacency matrix A with spectrum

spG = {θ0, θm1
1 , · · · , θmd

d }.

where θ0 > θ1 > · · · > θd.
When the eigenvalues are presented with possible repetitions, we shall
indicate them by

evG : λ1 ≥ λ2 ≥ · · · ≥ λn.

Let us consider the scalar product in Rd[x]:

〈f, g〉G =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(θi)g(θi).

The predistance polynomials p0(= 1), p1, . . . , pd are a sequence of
orthogonal polynomials with respect to the above product, with
dgr pi = i, normalized in such a way that ‖pi‖2G = pi(θ0)



Closed walks and adjacency matrix

Adjacency matrix A = (aij)

Power adjacency matrix Ak = (akij)

akij = # walks of length k from i to j



Graph powers

Given a graph G, the k-th power Gk is formed from G by adding all
edges between vertices at distance ≤ k.
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Graph powers

Given a graph G, the k-th power Gk is formed from G by adding all
edges between vertices at distance ≤ k.



Independence number

Independence number α(G): size of the largest
independent set of vertices in G



k-independence number

k-independence number αk(G): maximum size of
a set of vertices at pairwise distance greater than k

αk(G) = α(Gk)



k-independence number

α2 of the Corona graph?



k-independence number

α0(G): number of vertices of G

α1(G): independence number of G



Some previous work on αk

(Kong and Zhao 1993) For every k ≥ 2, determining αk(G) is
NP-complete for general graphs.

(Kong and Zhao 2000) The problem remains NP-complete for
regular bipartite graphs when k ∈ {2, 3, 4}.

(Duckworth and Zito 2003) Heuristic-based algorithm for the
2-independence number.



Some previous work on αk

(Firby and Haviland 1997) Upper bound for αk(G) in an
n-vertex connected graph.

(F. 1997) Eigenvalue upper bound for αk using alternating
polynomials.

(Beis, Duckworth and Zito 2005) For each fixed integer k ≥ 2
and r ≥ 3, upper bounds for αk(G) in random r-regular
graphs.



Some previous work on αk

(O, Shi and Taoqiu 2019) Sharp upper bounds for the
k-independence number in an n-vertex r-regular graph for
each positive integer k ≥ 2 and r ≥ 3.

(Jou, Lin and Lin 2020) Sharp upper bound for the
2-independence number of a tree.

(Enami and Negami 2020) The k-independence number is
related to the beans function of a connected graph.



Relation to coding theory

I Coding theory

 

Codes are k-independent sets in Hamming graphs

Spectral bounds for αk used to show the non existence of
certain perfect codes in Odd graphs (F. 2020)



Relation with other combinatorial parameters

I average distance (Firby and Haviland 1997): The
k-independence number can be used to formulate sharp
lower bounds for the average distance.

I d-diameter (Chung, Delorme and Solé 1999): A h-code
in a graph G with distance d is a set of h ≥ 2 vertices
with mini 6=j(d(xi, xj)) = d. The d-diameter of G, say Dh,
is the largest possible distance a h-code in G can have.
D2 is the standard diameter.



k-distance chromatic number

k-distance chromatic number χk(G):

χk(G) = χ(Gk)

Since χ(G) ≥ n/α(G), upper bounds on the
k-independence number give lower bounds on the
k-distance chromatic number, and vice versa.



Previous work on χk: a class of colouring problem

Question (Alon and Mohar 2002)
What is the largest possible value of the chromatic number
χ(Gk) of Gk, among all graphs G with maximum degree at
most d and girth at least g?

Case k = 1 (long-standing problem of Vizing): settled
asymptotically by (Johansson 1996) using the probabilistic
method.

Case k = 2: settled asymptotically by (Alon and Mohar 2002).

General k: bounds by (Alon and Mohar 2002), (Kang and
Pirot 2016), (Kang and Pirot 2018), ...



Our goal

Extension of two classical bounds for the
independence number of a graph.



First classical spectral bound for α

(Cvetković’s inertia bound 1972)
If G is a graph with eigenvalues λ1 ≥ · · · ≥ λn, then

α(G) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}
= min{N+, N−}.



Second classical spectral bound for α

(Hoffman’s ratio bound 1970)
If G is regular with eigenvalues λ1 ≥ · · · ≥ λn, then

α(G) ≤ n
−λn

λ1 − λn
.

and if an independent set C meets this bound then every
vertex not in C is adjacent to precisely −λn vertices of C.

Delsarte proved the ratio bound for SRGs, later Hoffman
extended it to regular graphs.



Motivation

αk is the independence number α of Gk

BUT

Even the simplest spectral or combinatorial parameters of Gk

cannot be deduced easily from the parameters of G...
thus one cannot just apply the inertia or ratio bound on Gk.

Our bounds depend only on the parameters (eigenvalues) of
the original graph G and not of Gk



Lovász theta function

(Lovász 1979)
Lovász theta function ϑ of G provides an upper bound for the
independence number α of G:

α(G) ≤ ϑ(G).

Therefore the Lovász theta function ϑ of Gk, ϑ(Gk) = ϑk(G), provides
an upper bound for the independence number of Gk, α(Gk) = αk(G):

αk(G) ≤ ϑk(G).



Hoffman-type bound vs Lovász theta bound

Lovász theta number ϑ of Gk, ϑk(G), upper bounds αk(G) ...

αk(G) ≤ ϑk(G)

but also

(Lovász 1979)
ϑ ≤ Hoffman’s bound

Our Hoffman-type bound cannot beat the Lovász theta
number of Gk.
However, computing our eigenvalue bounds (MILPs) are, for
small graphs, faster than solving an SDP, and in many cases
our bounds perform fairly good.



2. Some key concepts and results



A graph G is called k-partially walk-regular, for some integer k ≥ 0, if the
number of closed walks of a given length l ≤ k, rooted at a vertex v, only
depends on l.

Thus, every (simple) graph is k-partially walk-regular for k = 0, 1, and
every regular graph is 2-partially walk-regular.

Moreover G is k-partially walk-regular for any k if and only if G is
walk-regular, a concept introduced by Godsil and McKay (1980).

For example, it is well-known that every distance-regular graph is
walk-regular (but the converse does not hold).



Eigenvalue interlacing

Given square matrices A and B with respective eigenvalues
λ1 ≥ · · · ≥ λn and µ1 ≥ · · · ≥ µm, with m < n, we say that the second
sequence interlaces the first if, for all i = 1, . . . ,m, it follows that

λi ≥ µi ≥ λn−m+i.

Theorem (Haemers, 1995; F., 1999)
Let S be a real n×m matrix such that STS = I, and let A be a n× n
matrix with eigenvalues λ1 ≥ · · · ≥ λn. Define B = STAS, and call its
eigenvalues µ1 ≥ · · · ≥ µm. Then,

(i) The eigenvalues of B interlace those of A.

...
(ii)



Two interesting cases for the matrix S

Let A be the adjacency matrix of a graph G = (V,E).

I First, if B is a principal submatrix of A, then B corresponds to the
adjacency matrix of an induced subgraph G′ of G.

I Second, when, for a given partition of the vertices of Γ, say
V = U1 ∪ · · · ∪ Um, B is the so-called quotient matrix of A, with
elements bij , i, j = 1, . . . ,m, being the average row sums of the
corresponding block Aij of A.



The minor polynomials

Let G = (V,E) be a graph with spG = {θ0 > θm1
1 > · · · > θmd

d }. The
k-minor polynomial pk ∈ Rk[x] is the polynomial defined by pk(θ0) = 1
and pk(θi) = xi, 1 ≤ i ≤ d, where the vector (x1, x2, . . . , xd) is a
solution of the following linear programming problem:

minimize
∑d
i=0mip(θi)

with constraints f [θ0, . . . , θm] = 0, m = k + 1, . . . , d
xi ≥ 0, i = 1, . . . , d,

where f [θ0, . . . , θm] denote the m-th divided differences of Newton
interpolation, recursively defined by

f [θi, . . . , θj ] =
f [θi+1,...,θj ]−f [θi,...,θj−1]

θj−θi , where j > i, starting with

f [θi] = pk(θi) = xi, 0 ≤ i ≤ d.



Thus, we can easily compute the minor polynomial by using the simplex
method. Moreover, as the problem is in the so-called standard form, with
d variables (x1, . . . , xd) and d− (k+ 1) + 1 = d− k equations, the ‘basic
vectors’ have at least d− (d− k) = k zeros.

In fact, pk has degree k, with exactly k zeros at the mesh θ1, . . . , θd.
This fact, together with pk(θ0) = 1 and pk(θi) ≥ 0 for i = 1, . . . , d
drastically reduces the number of possible candidates for pk.



Some particular values of k

I The cases k = 0 and k = d are easy. Clearly, p0 = 1, and pd has
zeros at all the points θi for i 6= 0. In fact, pd = 1

nH, where H is
the Hoffman polynomial (1963).

I For k = 1, the only zero of p1 must be at θd. Hence p1(x) = x−θd
θ0−θd .

I For k = 2, the two zeros of p2 must be at consecutive eigenvalues θi
and θi−1. More precisely, θi must be the largest eigenvalues not

greater than −1. Then, p2(x) = (x−θi)(x−θi)
(θ0−θi)(θ0−θi) .

I When k = 3, the only possible zeros of p3 are θd and the consecutive
pair θi, θi−1 for some i ∈ [2, d− 1]. In this case, such a pair seems
be around the ‘center’ of the mesh (see the examples below).

I When k = d− 1, the polynomial pd−1 takes only one non-zero value
at the mesh, say at θ, which seems to be located at one of the
‘extremes’ of the mesh (e.g., when G is an r-antipodal
distance-regular graph, the choice θ = θ1 yields the tight bound
(that is, r) for αd−1.



The case of the Hamming graph H(2, 7)

This is an antipodal distance-regular graph, with n = 128 vertices,
diameter D = 7, and spectrum

spH(2, 7) = {71, 57, 321, 135,−135,−321,−57,−71}.

Then the solutions of the linear programming problem are:

k x7 x6 x5 x4 x3 x2 x1 x0
1 0 1/7 2/7 3/7 4/7 5/7 6/7 1

2 1 1/2 1/6 0 0 1/6 1/2 1

3 0 1/14 1/21 0 0 5/42 3/7 1

4 2/9 0 0 1/45 0 0 2/9 1

5 0 1/35 0 0 0 0 6/35 1

6 1 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 1

Table: Values xi = pk(θi) of the k-minor polynomials of the Hamming graph
H(2, 7).



The minor polynomials of the Hamming graph H(2, 7)



The JOHNSON GRAPH J(14, 7)

This is an antipodal (but not bipartite) distance-regular graph, with
n = 3432 vertices, diameter D = 7, and spectrum

sp J(14, 7) = {491, 3513, 2377, 13273, 5637,−11001,−51001,−7429}.

Then the solutions of the linear programming problem are:

k x7 x6 x5 x4 x3 x2 x1 x0
1 0 1/28 3/28 3/14 5/15 15/28 3/4 1

2 9/275 1/55 0 0 14/275 54/275 27/55 1

3 0 5/1232 1/176 0 0 75/1232 5/16 1

4 1/1485 0 0 0 0 14/495 2/9 1

5 0 1/2860 0 0 0 0 27/260 1

6 0 0 0 0 0 0 1/13 1

7 0 0 0 0 0 0 0 1

Table: Values xi = pk(θi) of the k-minor polynomials of the Johnson graph
J(14, 7).



The minor polynomials of the Johnson graph graph
J(14, 7)



3. Our first main results



Recall our inspiring results for α

Theorem (Cvetković, 1971)
Let G be a graph with eigenvalues λ1 ≥ · · · ≥ λn. Then,

α ≤ min{|{i : λi ≥ 0}|, |{i : λi ≤ 0}|}.

Theorem (Hoffman, 1995)
If G is a regular graph on n vertices with eigenvalues λ1 ≥ · · · ≥ λn, then

α ≤ n

1− λ1

λn

. (1)



With the alternating polynomials

Let G be a graph with distinct eigenvalues θ0 > · · · > θd. The
k-alternating polynomial Pk(x) of G is chosen among all polynomials
p(x) ∈ Rk(x) satisfying |p(θi)| ≤ 1 for all i = 1, . . . , d and such that
Pk(θ0) is maximized. Pk was shown to be unique (F., Garriga, Yebra,
1996).

Theorem (F., 1997)
Let G be a d-regular graph on n vertices, with distinct eigenvalues
θ0 > · · · > θd and let Pk(x) be its k-alternating polynomial. Then,

αk ≤
2n

Pk(θ0) + 1
. (2)



An Inertial-type bound

wk(G) := mini(A
k)ii (minimum number of closed walks of

length k taken over all V )

Wk(G) := maxi(A
k)ii (maximum number of closed walks of

length k taken over all V )

(Abiad, Cioabă and Tait 2016)
Let G be a graph on n vertices. Then,

αk(G) ≤ |{i : λki ≥ wk(G)}| and αk(G) ≤ |{i : λki ≤ Wk(G)}|.



Corollary Inertial-type bound, k = 1

(Cvetković 1972)
If G is a graph, then

α(G) ≤ min{|i : λi ≥ 0|, |i : λi ≤ 0|}.



A Hoffman-type bound

(n, d, λ)-graph: d-regular graph on n vertices with d = λ1 ≥ · · · ≥ λn ≥ −d
(the d-regularity of the graph guarantees that its largest-magnitude eigenvalue
is d) and λ = max{|λ2|, |λn|}

W̃k := maxi
∑k
j=1(A

j)ii (maximum number of closed walks of length at most
k over all V )

(Abiad, Cioabă and Tait 2016)
Let G be an (n, d, λ)-graph and k a natural number. Then

αk(G) ≤ n
W̃k +

∑k
j=1 λ

j∑k
j=1 d

j +
∑k
j=1 λ

j
.



Corollary Hoffman-type bound, k = 1

(Hoffman 1970)
If G is regular then

α(G) ≤ n
−λn

λ1 − λn
.



Proof idea

G has a k-independent set U of size αk.

The matrix Ak has a principal submatrix of size αk, which is indexed by the
vertices in U , and whose off-diagonal entries are 0 and whose diagonal entries
equal the number of closed walks of length k starting at vertices of U .

Cauchy interlacing leads to the result.
�



4. Our latest main results

4.1 The spectrum of Gk and G are related.

4.2 The case when G is partially walk-regular.

4.3 The general case (the spectrum of Gk and G are NOT related).



4.1 The spectrum of Gk and G are related

... when the adjacency matrix of Gk belongs to the algebra
generated by the adjacency matrix of A, i.e., ∃ a polynomial p
such that

p(A(G)) = A(Gk).

For instance, when G is k-partially distance polynomial
(Dalfó, van Dam, F., Garriga and Gorissen 2011)



4.1 The spectrum of Gk and G are related

... when the adjacency matrix of Gk belongs to the algebra
generated by the adjacency matrix of A, i.e., ∃ a polynomial p
such that

p(A(G)) = A(Gk).

Question (Alon and Mohar 2002)
What is the largest possible value of the chromatic number
χ(Gk) of Gk, among all graphs G with maximum degree at
most d and girth at least g?



4.1 The spectrum of Gk and G are related

(F. 2012)
Let G = (V,E) be a regular graph with n vertices, spectrum
{θm0

0 , θm1
1 , . . . , θmd

d }, and predistance polynomials p0, . . . , pd. For a
given integer k ≤ d and a vertex u ∈ V , let sk(u) be the number of
vertices at distance at most k from u, and consider the sum polynomial
qk = p0 + · · ·+ pk. Then, qk(θ0) is bounded above by the harmonic
mean Hk of the numbers sk(u), that is

qk(θ0) ≤ Hk =
n∑

u∈V
1

sk(u)

,

and equality occurs if and only if qk(A) = I +A(Gk).



4.1The spectrum of Gk and G are related

Using that qk(θ0) ≥ qk(θi) for i = 1, . . . , d, (F. 2012) and the inertia and
ratio bounds:

(Abiad, Coutinho, F., Nogueira and Zeijlemaker 2020)
Let G be a regular graph with eigenvalues λ1 ≥ · · · ≥ λn, satisfying
qk(λ1) = Hk. Let q′k = qk − 1, so that A(Gk) = q′k(A). Then,

χk ≥
n

min{|{i : q′k(λi) ≥ 0}|, |{i : q′k(λi) ≤ 0}|}
,

χk ≥
n

1− q′k(λ1)

min{q′k(λi)}

.



4.1 The spectrum of Gk and G are related

(Kang and Pirot 2016) provided a lower bound for χk from a
direct construction whose building blocks are incidence
structures. Those graphs which attain equality in our
Hoffman-type bound.



4.1 The spectrum of Gk and G are related

Another case where A(Gk) = qk(A)− I (spectra of Gk and G are
related) is when G is δ-regular graph with girth g and k = b g−12 c.

In this situation, G is k-partially distance-regular with ci = 1
(1 ≤ i ≤ k), ai = 0 (0 ≤ i ≤ k − 1), b0 = δ, bi = δ − 1 (1 ≤ i ≤ k − 1)
(Dalfó, van Dam, F., Garriga and Gorissen 2011), (Abiad, van Dam and
F. 2016) and q0 = 1, q1 = 1 + x, qi+1 = xqi − (δ − 1)qi−1 for
i = 1, . . . , k − 1.

Name Girth k αk
Moebius-Kantor Graph 6 2 4
Nauru Graph 6 2 6
Blanusa First Snark Graph 5 2 4
Blanusa Second Snark Graph 5 2 4
Brinkmann graph 5 2 3
Heawood graph 6 2 2
Sylvester Graph 5 2 6
Coxeter Graph 7 3 4
Dyck graph 6 2 8
F26A Graph 6 2 6
Flower Snark 5 2 5



4.2 The case when G is partially walk-regular

Theorem (F. 2020)
Let G be a k-partially walk-regular graph with n vertices, adjacency
matrix A, and spectrum spG = {θm0

0 , . . . , θmd

d }. Let pk ∈ Rk[x] be the
k-minor polynomial. Then,

αk ≤ tr pk(A) =

d∑
i=0

mipk(θi). (3)

Also,
θ ≤ tr pk(A) and Θ ≤ tr pk(A),

where Θ = lim`→∞
√̀
α(G�`) is the Shannon capacity of a graph.



Proof. Let U be a k-independent set of G with r = |U | = αk(G)
vertices (first columns and rows of A corresponding to the vertices in U).
Let S be the normalized characteristic matrix of this partition. Then, the
quotient matrix of p(A), Bk = ST p(A)S, is(

1
r

∑
u∈U (pk(A))uu pk(θ0)− 1

r

∑
u∈U (pk(A))uu

rpk(θ0)−
∑

u∈U (p(A))uu

n−r pk(θ0)− rpk(θ0)−
∑

u∈U (p(A))uu

n−r

)

=

(
1
n

∑d
i=0mipk(θi) 1− 1

n

∑d
i=0mipk(θi)

r− r
n

∑d
i=0mipk(θi)

n−r 1− r− r
n

∑d
i=0mipk(θi)

n−r

)
,

with eigenvalues µ1 = p(θ0) = 1 and

µ2 = trBk − 1 = w(pk)− r − rw(pk)

n− r
.

where w(pk) = 1
n

∑d
i=0mipk(θi). Then, by interlacing, we have

0 ≤ µ2 ≤ w(pk)− r − rw(pk)

n− r
,

and the result follows. 2



The case k = 1.

As mentioned above, α1 coincides with the standard independence
number α. In this case the minor polynomial is p1(x) = x−θd

θ0−θd . Then, (3)
gives

α1 = α ≤ tr p1(A) =
−nθd
θ0 − θd

, (4)

which is Hoffman’s bound in (1).



The case k = 2.

We already stated that p2(x) = (x−θi)(x−θi−1)
(θ0−θi)(θ0−θi−1)

. Then, (3) yields

α2 ≤ tr p2(A) = n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
, (5)

in agreement with the result in (i).



Some examples

To compare the above bounds with those obtained before, let us consider
again the Hamming graph H(2, 7) and the Johnson graph J(14, 7).

k 1 2 3 4 5 6 7
Bound from (2) 109 72 36 19 7 2 –

Bound from (??) (k > 2) - - 65 67 64 65 64
Bound from (i)-(iii) - 21 56 6 55 3 55

Bound from (3) 64 16 8 3 2 2 1

Table: Comparison of the bounds for αk in the Hamming graph H(2, 7).



k 3 4 5 6 7
Bound from (2) 464 125 20 2 –

Bound from (??) 935 721 546 408 302
Bound from (ii)-(iii) 26 10 5 3 2

Bound from (iv) 80 86 25 2 1
Bound from (3) 19 6 2 2 1

Table: Comparison of bounds for αk in the Johnson graph J(14, 7).

Note that the bounds for k = 6, 7 are equal to the correct values α6 = 2
(since both graphs are 2-antipodal, and α7 = 1 (since their diameter is
D = 7). Besides, in the case of the Hamming graph, α2 = 16 since it
contains the perfect Hamming code H(7, 4).



An infinite family where our bound for αd−1 is tight

Assume that the minor polynomial takes non-zero value only at θ1. Thus,
pd−1(x) = 1∏d

i=2(θ0−θi)
∏d
i=2(x− θi). Then, the bound of (3) is

d∑
i=0

mipd−1(θi) = m0pd−1(θ0) +m1pd−1(θ1)

= 1 +

∏d
i=2(θ1 − θi)∏d
i=2(θ0 − θi)

= 1 +m1
π1
π0

where, in general, πi =
∏
j=0,j 6=i |θi − θj | for i ∈ [0, d].

It is known (F., 1997) that G is an r-antipodal distance-regular graph if
and only if its eigenvalue multiplicities are mi = π0/πi for i even, and
mi = (r − 1)π0/πi for i odd. Then, we get

αd−1 ≤ 1 +m1
π1
π0

= r,

which is the correct value.



4.3 The general case

The spectra of Gk and G are NOT related



Main result I: Inertial-type bound

W (p) := maxu∈V {(p(A))uu}
w(p) := minu∈V {(p(A))uu}

(Abiad, Coutinho and F. 2019)
Let p ∈ Rk[x] with corresponding parameters W (p), w(p). Then,

αk ≤ min{|{i : p(λi) ≥ w(p)}|, |{i : p(λi) ≤W (p)}|.

(Abiad, Cioabă and Tait 2016)
Let G be a graph on n vertices. Then,

αk(G) ≤ |{i : λki ≥ wk(G)}| and αk(G) ≤ |{i : λki ≤Wk(G)}|.



Main result I: Inertial-type bound

W (p) := maxu∈V {(p(A))uu}
w(p) := minu∈V {(p(A))uu}

(Abiad, Coutinho and F. 2019)
Let p ∈ Rk[x] with corresponding parameters W (p), w(p). Then,

αk ≤ min{|{i : p(λi) ≥ w(p)}|, |{i : p(λi) ≤W (p)}|.

Interesting if one can come up with a good choice for
p ∈ Rk[x] or with an efficient method (like MILP) to compute

it in practice



Main result II: Hoffman-type bound

W (p) := maxu∈V {(p(A))uu}
w(p) := minu∈V {(p(A))uu}
Λ(p) := maxi∈[2,n]{p(λi)}
λ(p) := mini∈[2,n]{p(λi)}

(Abiad, Coutinho and F. 2019)
Let G be a regular graph with n vertices and eigenvalues λ1 ≥ · · · ≥ λn.
Let p ∈ Rk[x] with corresponding parameters W (p) and λ(p), and
assume p(λ1) > λ(p). Then,

αk ≤ n
W (p)− λ(p)

p(λ1)− λ(p)
.



Proof idea

Before we used a generalization of the Expander Mixing
lemma, but we could have also used eigenvalue interlacing
with quotient matrix.



Proof idea
I Let U be a k-independent set of G with r = |U | = αk(G) vertices (first

columns and rows of A corresponding to the vertices in U).

I Consider the partition wrt {U, V \ U} with normalized characteristic
matrix S.

I The quotient matrix of p(A) is

ST p(A)S = Bk =

 1
r

∑
u∈U

(p(A))uu p(λ1)− 1
r

∑
u∈U (p(A))uu

rp(λ1)−
∑

u∈U (p(A))uu

n−r p(λ1)−
rp(λ1)−

∑
u∈U (p(A))uu

n−r


with eigenvalues µ1 = p(λ1) and

µ2 = trBk − p(λ1) =
1

r

∑
u∈U

(p(A))uu −
rp(λ1)−

∑
u∈U (p(A))uu

n− r .

I By Haemers interlacing

λ(p) ≤ µ2 ≤W (p)− rp(λ1)− rW (p)

n− r ,

solve for r and use p(λ1)− λ(p) > 0. �



Main result II: Hoffman-type bound

(Abiad, Coutinho and F. 2019)
Let G be a regular graph with n vertices and eigenvalues λ1 ≥ · · · ≥ λn.
Let p ∈ Rk[x] with corresponding parameters W (p) and λ(p), and
assume p(λ1) > λ(p). Then,

αk ≤ n
W (p)− λ(p)

p(λ1)− λ(p)
.

Improvement of the Hoffman-type bound from
(Abiad, Cioabă and Tait 2016)

Sharp for some values of k
(see table coming in a few slides)



Corollary Hoffman-type bound, k = 1

Take p as any linear polynomial satisfying p(λ1) > λ(p), say
p(x) = x.

Then, W (p) = 0, p(λ1) = λ1, λ(p) = p(λn) = λn.

(Hoffman 1970)
If G is regular then

α1 = α ≤ n
−λn

λ1 − λn
.



Some other particular cases

Theorem (Abiad, Coutinho, F. (2018))
Let G be a δ-regular graph with n vertices and distinct eigenvalues
θ0(= δ) > θ1 > · · · > θd. Let Wk = W (p) = maxu∈V {

∑k
i=1(Ak)uu}.

(i) If k = 2, then α2 ≤ n θ0+θiθi−1

(θ0−θi)(θ0−θi−1)
, where θi is the largest

eigenvalue not greater than −1.

(ii) If k > 2 is odd, then αk(G) ≤ n Wk−
∑k

j=0 θ
j
d∑k

j=0 δ
j−

∑k
j=0 θ

j
d

.

(iii) If k > 2 is even, then αk(G) ≤ n Wk+1/2∑k
j=0 δ

j+1/2
.

(iv) If G = (V,E) is a walk-regular graph, then αk(G) ≤ n 1−λ(qk)
qk(δ)−λ(qk)

for k = 0, . . . , d− 1, where qk = p0 + · · ·+ pk with the pi’s being
the predistance polynomials of G, and λ(qk) = mini∈[2,d]{qk(θi)}.



Bounds computational comparison: k=2



Next natural question

p ∈ Rk[x], U a k-independent set in G

p(A) has a principal submatrix defined by U that is diagonal,
with diagonal entries defined by a linear combination of

various closed walks

In our bounds p(A) = Ak

Other polynomials? How to choose p(A) to optimize our
bounds?



Further optimization?

Using MILP techniques to implement the eigenvalue bounds,
and sometimes assuming extra properties on the graph, yes!

Joint work with A. Abiad, G. Coutinho, B.D. Nogueira and S. Zeijlemaker



Main questions

Inertial-type bound: best polynomial for general k?

Hoffman-type bound: best polynomial for general k?



Optimizing the inertial-type bound

(Abiad, Coutinho and F. 2019)
Let G be a graph with n vertices and eigenvalues λ1 ≥ · · · ≥ λn. Let
p ∈ Rk[x] with corresponding parameters W (p) and λ(p).

αk ≤ min{|i : p(λi) ≥ w(p)|, |i : p(λi) ≤W (p)|}.



Optimizing the inertial-type bound

Let G have spectrum {θm0
0 , . . . , θmd

d }. Let p(x) = akx
k + · · ·+ a0,

b = (b0, . . . , bd) ∈ {0, 1}d+1, and m = (m0, . . . ,md).

Variables: a0, . . . , ak and b1, . . . , bd.

For each u ∈ V (G), we run one MILP and find the best objective value
of all:

Each bj = 1 represents an index j so that p(θj) ≥ w(p) = 0. Condition (∗)
gives that p(θj) ≥ 0 implies bj = 1.
So, upon minimizing the quantity of such indices j, we are optimizing p(x) and
the corresponding bound αk ≤m>b. For each u ∈ V (G), we write one such
MILP and find the best objective value of all.



Optimizing the inertial-type bound: extra assumption

Can we avoid running the MILP for each u ∈ V (G)?

Yes, assuming k-partially walk-regularity.

G is k-partially walk-regular, for some integer k ≥ 0, if the
number of closed walks of a given length l ≤ k, rooted at a
vertex v, only depends on l.
Every graph is k-partially walk-regular for k = 0, 1, and every
regular graph is 2-partially walk-regular.



Optimizing the inertial-type bound: extra assumption

In the case of k-partially walk-regular graphs, we only need
to run the MILP once, since all vertices have the same number
of closed walks of length smaller of equal than k.

For instance, for Odd graphs the MILP finds the best
polynomials for upper bounding αk.



An alternative inertial-type bound

(Abiad, Coutinho, F., Nogueira, and Zeijlemaker 2020)
Let G be a k-partially walk-regular graph with adjacency
matrix eigenvalues λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that∑n

i=1 pk(λi) = 0. Then,

χk ≥ 1 + max

(
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
.



Optimizing an alternative inertial-type bound

(Abiad, Coutinho, F., Nogueira and Zeijlemaker 2020)
Let G be a k-partially walk-regular graph with adjacency matrix
eigenvalues λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that

∑n
i=1 pk(λi) = 0.

Then,

χk ≥ 1 + max

(
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
.

Trace p(A)=0



Optimizing an alternative inertial-type bound

(Abiad, Coutinho, F., Nogueira and Zeijlemaker 2020)
Let G be a k-partially walk-regular graph with adjacency matrix
eigenvalues λ1 ≥ · · · ≥ λn. Let pk ∈ Rk[x] such that

∑n
i=1 pk(λi) = 0.

Then,

χk ≥ 1 + max

(
|j : pk(λj) < 0|
|j : pk(λj) > 0|

)
.

p(λj) > 0 =⇒ cj = 1



Open problems

I Same MILP methods could be useful to find the target
polynomial in other graphs and/or for other values of k.

I Relationship between inertial-type and ratio-type bounds
via the obtained polynomials from the MILPs?

I Application of the bounds for αk to the non existence of
perfect codes?

I (Lenstra 1983) showed that MILP with fixed number of
variables are polynomial solvable. Given a fixed n, find an
(efficient) algorithm to compute the best bounds with the
MILPs?



Gràcies per l’atenció
Thanks for your attention
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