New Lower Bounds on Multicolour Diagonal Ramsey Numbers

Matthew Coulson
Universitat Politécnica de Catalunya

Reading Group: New trends in Combinatorics

7th October, 2020

Based on work by Conlon \& Ferber; Widgerson.

What is a Ramsey Number?

Question: Suppose we colour K_{n} with ℓ colours, what monochromatic substructures can we find?

What is a Ramsey Number?

Question: Suppose we colour K_{n} with ℓ colours, what monochromatic substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.

What is a Ramsey Number?

Question: Suppose we colour K_{n} with ℓ colours, what monochromatic substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.
Ramsey number, $R\left(k_{1}, \ldots, k_{\ell}\right)$ is defined to be the minimum value of n such that colouring the edges of K_{n} with colours c_{1}, \ldots, c_{ℓ} yields $K_{k_{1}}$ in colour c_{1} or $K_{k_{2}}$ in colour $c_{2} \ldots$

What is a Ramsey Number?

Question: Suppose we colour K_{n} with ℓ colours, what monochromatic substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.
Ramsey number, $R\left(k_{1}, \ldots, k_{\ell}\right)$ is defined to be the minimum value of n such that colouring the edges of K_{n} with colours c_{1}, \ldots, c_{ℓ} yields $K_{k_{1}}$ in colour c_{1} or $K_{k_{2}}$ in colour $c_{2} \ldots$

Note - that $R\left(k_{1}, \ldots, k_{\ell}\right)$ exists for all $\ell ; k_{1}, \ldots, k_{\ell} \in \mathbb{N}$ is known as Ramsey's Theorem.

What is a Ramsey Number?

Question: Suppose we colour K_{n} with ℓ colours, what monochromatic substructures can we find?

Moral of Ramsey Theory: Complete disorder is impossible.
Ramsey number, $R\left(k_{1}, \ldots, k_{\ell}\right)$ is defined to be the minimum value of n such that colouring the edges of K_{n} with colours c_{1}, \ldots, c_{ℓ} yields $K_{k_{1}}$ in colour c_{1} or $K_{k_{2}}$ in colour $c_{2} \ldots$

Note - that $R\left(k_{1}, \ldots, k_{\ell}\right)$ exists for all $\ell ; k_{1}, \ldots, k_{\ell} \in \mathbb{N}$ is known as Ramsey's Theorem.

Diagonal Ramsey Numbers:

$$
R(t ; \ell):=R(\underbrace{t, t, \ldots, t}_{\ell \text { copies }})
$$

The Ramsey number $R(3 ; 2)=R(3,3)$ i.e., the 2 colour Ramsey number for a triangle is the smallest non-trivial Ramsey number.

The Ramsey number $R(3 ; 2)=R(3,3)$ i.e., the 2 colour Ramsey number for a triangle is the smallest non-trivial Ramsey number.

We shall show that $R(3 ; 2)=6$.

The Ramsey number $R(3 ; 2)=R(3,3)$ i.e., the 2 colour Ramsey number for a triangle is the smallest non-trivial Ramsey number.

We shall show that $R(3 ; 2)=6$.

$$
R(3 ; 2)>5
$$

$R(3 ; 2)=6$

The Ramsey number $R(3 ; 2)=R(3,3)$ i.e., the 2 colour Ramsey number for a triangle is the smallest non-trivial Ramsey number.

We shall show that $R(3 ; 2)=6$.

$$
R(3 ; 2)>5
$$

$$
R(3 ; 2) \leq 6
$$

$R(3 ; 2)=6$

The Ramsey number $R(3 ; 2)=R(3,3)$ i.e., the 2 colour Ramsey number for a triangle is the smallest non-trivial Ramsey number.

We shall show that $R(3 ; 2)=6$.

$$
R(3 ; 2)>5
$$

One of the dashed lines is blue or all are red.

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.
The probability that an arbitrary K_{t} is monochromatic is $2 \cdot 2^{-\binom{t}{2}}$.

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.
The probability that an arbitrary K_{t} is monochromatic is $2 \cdot 2^{-\binom{t}{2}}$.
There are $\binom{n}{t}$ copies of K_{t} in K_{n}.

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.
The probability that an arbitrary K_{t} is monochromatic is $2 \cdot 2^{-\binom{t}{2}}$.
There are $\binom{n}{t}$ copies of K_{t} in K_{n}.
So the expected number of monochromatic copies of K_{t} is $2\binom{n}{t} 2^{-\binom{t}{2} \text {. }}$

Erdős' Lower Bound

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.
The probability that an arbitrary K_{t} is monochromatic is $2 \cdot 2^{-\binom{t}{2}}$.
There are $\binom{n}{t}$ copies of K_{t} in K_{n}.
So the expected number of monochromatic copies of K_{t} is $2\binom{n}{t} 2^{-\binom{t}{2} \text {. }}$
Ignoring lower order terms, this is $n^{t} 2^{-\frac{k^{2}}{2}}$ which is less than 1 provided $n \leq \sqrt{2}^{t}$.

Theorem (Erdős)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \geq \sqrt{2}^{t}$

Idea: Pick the colouring uniformly at random.
Colour edges red/blue with probability $\frac{1}{2}$ independently of all others.
The probability that an arbitrary K_{t} is monochromatic is $2 \cdot 2^{-\binom{t}{2}}$.
There are $\binom{n}{t}$ copies of K_{t} in K_{n}.
So the expected number of monochromatic copies of K_{t} is $2\binom{n}{t} 2^{-\binom{t}{2} \text {. }}$
lgnoring lower order terms, this is $n^{t} 2^{-\frac{k^{2}}{2}}$ which is less than 1 provided $n \leq \sqrt{2}^{t}$.

This allows us to deduce that there is at least one graph on $\sqrt{2}^{t}$ vertices with no monochromatic K_{t}.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.
For $i \geq 1$ Let v_{i} be an arbitrary vertex of G_{i-1}, it has either at least $\lfloor n / 2\rfloor$ incident red edges or $\lfloor n / 2\rfloor$ incident blue edges.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.
For $i \geq 1$ Let v_{i} be an arbitrary vertex of G_{i-1}, it has either at least $\lfloor n / 2\rfloor$ incident red edges or $\lfloor n / 2\rfloor$ incident blue edges.

Let G_{i} be the graph induced by the vertices connected to v_{i} in G_{i-1} by edges of the majority colour among those incident to v_{i} in G_{i-1}.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.
For $i \geq 1$ Let v_{i} be an arbitrary vertex of G_{i-1}, it has either at least $\lfloor n / 2\rfloor$ incident red edges or $\lfloor n / 2\rfloor$ incident blue edges.

Let G_{i} be the graph induced by the vertices connected to v_{i} in G_{i-1} by edges of the majority colour among those incident to v_{i} in G_{i-1}.

Repeat the above two steps until $i=2 t-1$.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.
For $i \geq 1$ Let v_{i} be an arbitrary vertex of G_{i-1}, it has either at least $\lfloor n / 2\rfloor$ incident red edges or $\lfloor n / 2\rfloor$ incident blue edges.

Let G_{i} be the graph induced by the vertices connected to v_{i} in G_{i-1} by edges of the majority colour among those incident to v_{i} in G_{i-1}.

Repeat the above two steps until $i=2 t-1$.
Colour v_{i} red if G_{i} is the vertices connected to v_{i} in red, blue otherwise.

Erdős-Szekeres Upper Bound

Theorem (Erdős-Szekeres)

The two colour diagonal Ramsey number satisfies $R(t ; 2) \leq 4^{t}$

Idea: Neighbourhood Chasing.
We must find a monochromatic K_{t} for each graph of size 4^{t}.
Let G_{0} be the initial coloured K_{n}.
For $i \geq 1$ Let v_{i} be an arbitrary vertex of G_{i-1}, it has either at least $\lfloor n / 2\rfloor$ incident red edges or $\lfloor n / 2\rfloor$ incident blue edges.

Let G_{i} be the graph induced by the vertices connected to v_{i} in G_{i-1} by edges of the majority colour among those incident to v_{i} in G_{i-1}.

Repeat the above two steps until $i=2 t-1$.
Colour v_{i} red if G_{i} is the vertices connected to v_{i} in red, blue otherwise.
At least t of the v_{i} share a colour and therefore form a monochromatic K_{t}.

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \leq \ell^{\ell t}$

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \leq \ell^{\ell t}$

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \geq \sqrt{\ell}^{t}$

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \leq \ell^{\ell t}$

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \geq \sqrt{\ell}^{t}$

The second of these can be improved by an observation of Lefmann, that

$$
R\left(t ; \ell_{1}+\ell_{2}\right)-1 \leq\left(R\left(t ; \ell_{1}\right)-1\right)\left(R\left(t ; \ell_{2}\right)-1\right)
$$

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \leq \ell^{\ell t}$

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \geq \sqrt{\ell}^{t}$

The second of these can be improved by an observation of Lefmann, that

$$
R\left(t ; \ell_{1}+\ell_{2}\right)-1 \leq\left(R\left(t ; \ell_{1}\right)-1\right)\left(R\left(t ; \ell_{2}\right)-1\right)
$$

Blow up a mono- K_{t}-free ℓ_{1}-colouring on $R\left(t ; \ell_{1}\right)-1$ vertices such that each vertex set has size $R\left(t ; \ell_{2}\right)-1$ and colour these sets with remaining ℓ_{2} colours without monochromatic K_{t}.

Multiple Colours

The bounds from the previous two slides can be generalised to mutliple colours with almost identical proofs.

This yields the following two bounds.

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \leq \ell^{\ell t}$

Theorem

The ℓ colour diagonal Ramsey number satisfies $R(t ; \ell) \geq \sqrt{\ell}^{t}$

The second of these can be improved by an observation of Lefmann, that

$$
R\left(t ; \ell_{1}+\ell_{2}\right)-1 \leq\left(R\left(t ; \ell_{1}\right)-1\right)\left(R\left(t ; \ell_{2}\right)-1\right)
$$

Blow up a mono- K_{t}-free ℓ_{1}-colouring on $R\left(t ; \ell_{1}\right)-1$ vertices such that each vertex set has size $R\left(t ; \ell_{2}\right)-1$ and colour these sets with remaining ℓ_{2} colours without monochromatic K_{t}.

Gives lower bound essentially $R(t ; \ell) \geq 3^{\frac{\ell t}{6}}$.

Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))
For any prime $q, R(t ; q+1) \geq 2^{t / 2} q^{3 t / 8+o(t)}$.

Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))

For any prime $q, R(t ; q+1) \geq 2^{t / 2} q^{3 t / 8+o(t)}$.

This gives exponential improvements to the previous best lower bounds on $R(t ; 3)$ and $R(t ; 4)$.

Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))

For any prime $q, R(t ; q+1) \geq 2^{t / 2} q^{3 t / 8+o(t)}$.

This gives exponential improvements to the previous best lower bounds on $R(t ; 3)$ and $R(t ; 4)$.

Corollary

$$
R(t ; 3) \geq 2^{7 t / 8+o(t)} \text { and } R(t ; 4) \geq 2^{t / 2} 3^{3 t / 8+o(t)}
$$

Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))

For any prime $q, R(t ; q+1) \geq 2^{t / 2} q^{3 t / 8+o(t)}$.

This gives exponential improvements to the previous best lower bounds on $R(t ; 3)$ and $R(t ; 4)$.

Corollary

$$
R(t ; 3) \geq 2^{7 t / 8+o(t)} \text { and } R(t ; 4) \geq 2^{t / 2} 3^{3 t / 8+o(t)}
$$

Applying Lefmann's observation also gives the following improvement for any number of colours.

Conlon-Ferber Result

Theorem (Conlon, Ferber (2020))

For any prime $q, R(t ; q+1) \geq 2^{t / 2} q^{3 t / 8+o(t)}$.

This gives exponential improvements to the previous best lower bounds on $R(t ; 3)$ and $R(t ; 4)$.

Corollary

$$
R(t ; 3) \geq 2^{7 t / 8+o(t)} \text { and } R(t ; 4) \geq 2^{t / 2} 3^{3 t / 8+o(t)}
$$

Applying Lefmann's observation also gives the following improvement for any number of colours.

Corollary

$$
R(t ; \ell) \geq 2^{7 \ell t / 24+o(t)}\left(\gg 3^{\ell t / 6}\right)
$$

Conlon-Ferber Construction

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Conlon-Ferber Construction

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Note that $q^{t-2} \leq|V| \leq q^{t}$ where the lower bound follows as each element of \mathbb{F}_{q} may be written as the sum of two squares.

Conlon-Ferber Construction

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Note that $q^{t-2} \leq|V| \leq q^{t}$ where the lower bound follows as each element of \mathbb{F}_{q} may be written as the sum of two squares.

Colouring: We construct our colouring χ as follows.

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Note that $q^{t-2} \leq|V| \leq q^{t}$ where the lower bound follows as each element of \mathbb{F}_{q} may be written as the sum of two squares.

Colouring: We construct our colouring χ as follows.
If $u, v \in V$ and $u \cdot v=i$ where $i \neq 0 \bmod q$, then set $\chi(u, v)=i$. Otherwise choose $\chi(u v)$ uniformly at random from $\{q, q+1\}$ independently of all other randomness.

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Note that $q^{t-2} \leq|V| \leq q^{t}$ where the lower bound follows as each element of \mathbb{F}_{q} may be written as the sum of two squares.

Colouring: We construct our colouring χ as follows.
If $u, v \in V$ and $u \cdot v=i$ where $i \neq 0 \bmod q$, then set $\chi(u, v)=i$. Otherwise choose $\chi(u v)$ uniformly at random from $\{q, q+1\}$ independently of all other randomness.

Embedding: Let f be a random injective map, $f:[n] \rightarrow V$. Define the colour of edge ij as $\chi(f(i) f(j))$.

Conlon-Ferber Construction

Host Graph: Let q be prime, and suppose that $t \neq 0 \bmod q$. Let V be the set of all vectors $v \in \mathbb{F}_{q}^{t}$ such that $\sum_{i=1}^{t} v_{i}^{2}=0$.

Note that $q^{t-2} \leq|V| \leq q^{t}$ where the lower bound follows as each element of \mathbb{F}_{q} may be written as the sum of two squares.

Colouring: We construct our colouring χ as follows.
If $u, v \in V$ and $u \cdot v=i$ where $i \neq 0 \bmod q$, then set $\chi(u, v)=i$. Otherwise choose $\chi(u v)$ uniformly at random from $\{q, q+1\}$ independently of all other randomness.

Embedding: Let f be a random injective map, $f:[n] \rightarrow V$. Define the colour of edge ij as $\chi(f(i) f(j))$.

That is, we take a random induced subgraph of V of size n and shall show it contains no monochromatic clique of size t.

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

To do so we show the same is true in V by linear independence.

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

To do so we show the same is true in V by linear independence.
Suppose $v_{1}, \ldots, v_{s} \in V$ form a clique of colour i and suppose that $u=\sum_{j=1}^{s} \alpha_{j} v_{j}=0$.

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

To do so we show the same is true in V by linear independence.
Suppose $v_{1}, \ldots, v_{s} \in V$ form a clique of colour i and suppose that $u=\sum_{j=1}^{s} \alpha_{j} v_{j}=0$.

Consider products $u \cdot v_{k}$, we find that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ solves $M \alpha=0$ where M is the $s \times s$ matrix which is i everywhere but the diagonal where it is 0 .

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

To do so we show the same is true in V by linear independence.
Suppose $v_{1}, \ldots, v_{s} \in V$ form a clique of colour i and suppose that $u=\sum_{j=1}^{s} \alpha_{j} v_{j}=0$.

Consider products $u \cdot v_{k}$, we find that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ solves $M \alpha=0$ where M is the $s \times s$ matrix which is i everywhere but the diagonal where it is 0 .

This has eigenvalues $i(s-1)$ (multiplicity 1) and $-i$ (multiplicity $s-1$). So if $s \neq 1 \bmod q, M$ is non-singular over \mathbb{F}_{q} and thus $\alpha=0$ so v_{1}, \ldots, v_{s} is a linearly independent set of vectors whereby $s \leq t=\operatorname{dim}\left(\mathbb{F}_{q}^{t}\right)$.

Conlon-Ferber Proof 1/3

The first stage is to show that there is no monochromatic clique in colour i for any $1 \leq i \leq q-1$.

To do so we show the same is true in V by linear independence.
Suppose $v_{1}, \ldots, v_{s} \in V$ form a clique of colour i and suppose that $u=\sum_{j=1}^{s} \alpha_{j} v_{j}=0$.

Consider products $u \cdot v_{k}$, we find that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ solves $M \alpha=0$ where M is the $s \times s$ matrix which is i everywhere but the diagonal where it is 0 .

This has eigenvalues $i(s-1)$ (multiplicity 1) and $-i$ (multiplicity $s-1$). So if $s \neq 1 \bmod q, M$ is non-singular over \mathbb{F}_{q} and thus $\alpha=0$ so v_{1}, \ldots, v_{s} is a linearly independent set of vectors whereby $s \leq t=\operatorname{dim}\left(\mathbb{F}_{q}^{t}\right)$.

If $s=1 \bmod q$, the same argument with v_{1}, \ldots, v_{s-1} yields $s-1 \leq t$ and $s-1 \neq t$ as then $t=0 \bmod q$ which we assumed was not the case.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.
Let M_{X} be the matrix whose rows are the vectors of X, then $M_{X} M_{X}^{T}=0$ from which we may immediately deduce that $r=\operatorname{rank}\left(M_{X}\right) \leq t / 2$.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.
Let M_{X} be the matrix whose rows are the vectors of X, then $M_{X} M_{X}^{T}=0$ from which we may immediately deduce that $r=\operatorname{rank}\left(M_{X}\right) \leq t / 2$.

Counting Potential Cliques:

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.
Let M_{X} be the matrix whose rows are the vectors of X, then $M_{X} M_{X}^{T}=0$ from which we may immediately deduce that $r=\operatorname{rank}\left(M_{X}\right) \leq t / 2$.

Counting Potential Cliques:

Assume we first pick r linearly independent vectors, then pick the remainder in the span of these, gives at most

$$
\left(\prod_{i=0}^{r-1} q^{t-i}\right) q^{r(t-r)}=q^{2 t r-\frac{3 r^{2}}{2}+\frac{r}{2}}
$$

Potential cliques of rank r.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.
Let M_{X} be the matrix whose rows are the vectors of X, then $M_{X} M_{X}^{T}=0$ from which we may immediately deduce that $r=\operatorname{rank}\left(M_{X}\right) \leq t / 2$.

Counting Potential Cliques:

Assume we first pick r linearly independent vectors, then pick the remainder in the span of these, gives at most

$$
\left(\prod_{i=0}^{r-1} q^{t-i}\right) q^{r(t-r)}=q^{2 t r-\frac{3 r^{2}}{2}+\frac{r}{2}}
$$

Potential cliques of rank r.
Expression above increasing in r for $r \leq t / 2$ so max attained when $r=t / 2$.

Conlon-Ferber Proof 2/3

Next, we deal with the colours q and $q+1$.
Say X is a potential clique if it has size t and $u \cdot v=0 \bmod q$ for all $u, v \in X$.
Let M_{X} be the matrix whose rows are the vectors of X, then $M_{X} M_{X}^{T}=0$ from which we may immediately deduce that $r=\operatorname{rank}\left(M_{X}\right) \leq t / 2$.

Counting Potential Cliques:

Assume we first pick r linearly independent vectors, then pick the remainder in the span of these, gives at most

$$
\left(\prod_{i=0}^{r-1} q^{t-i}\right) q^{r(t-r)}=q^{2 t r-\frac{3 r^{2}}{2}+\frac{r}{2}}
$$

Potential cliques of rank r.
Expression above increasing in r for $r \leq t / 2$ so max attained when $r=t / 2$.
So sum over all ranks gives that we have at most $N_{t}=q^{\frac{5 t^{2}}{8}+o\left(t^{2}\right)}$ potential cliques.

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

$$
2 p^{t} 2^{-\binom{t}{2}} N_{t} \leq q^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} q^{5 t^{2} / 8+o\left(t^{2}\right)}=\left(2^{-t / 2} q^{-3 t / 8+o(t)} n\right)^{t}<\frac{1}{2}
$$

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

$$
2 p^{t} 2^{-\binom{t}{2}} N_{t} \leq q^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} q^{5 t^{2} / 8+o\left(t^{2}\right)}=\left(2^{-t / 2} q^{-3 t / 8+o(t)} n\right)^{t}<\frac{1}{2}
$$

(Where we have chosen the $o(t)$ term in n appropriately so that the final inequality is correct.)

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

$$
2 p^{t} 2^{-\binom{t}{2}} N_{t} \leq q^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} q^{5 t^{2} / 8+o\left(t^{2}\right)}=\left(2^{-t / 2} q^{-3 t / 8+o(t)} n\right)^{t}<\frac{1}{2}
$$

(Where we have chosen the $o(t)$ term in n appropriately so that the final inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements with probability at most $1 / 2$.

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

$$
2 p^{t} 2^{-\binom{t}{2}} N_{t} \leq q^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} q^{5 t^{2} / 8+o\left(t^{2}\right)}=\left(2^{-t / 2} q^{-3 t / 8+o(t)} n\right)^{t}<\frac{1}{2}
$$

(Where we have chosen the $o(t)$ term in n appropriately so that the final inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements with probability at most $1 / 2$.

Thus by a union bound there is a colouring and choice of subset of V of size n with no monochromatic potential clique in this subset.

Conlon-Ferber Proof 3/3

Monochromaticity Probability:

The probability that a given potential clique becomes monochromatic after colouring with q and $q+1$ is $2 \cdot 2^{-\binom{t}{2} \text {. }}$

Next pick a random subset of V where we take each element with probability $2 n|V|^{-1}=n q^{-t+O(1)}$.

The expected number of monochromatic potential cliques in this subset when we take $n=2^{t / 2} q^{3 t / 8+o(t)}$ is at most

$$
2 p^{t} 2^{-\binom{t}{2}} N_{t} \leq q^{-t^{2}+o\left(t^{2}\right)} n^{t} 2^{-t^{2} / 2+o\left(t^{2}\right)} q^{5 t^{2} / 8+o\left(t^{2}\right)}=\left(2^{-t / 2} q^{-3 t / 8+o(t)} n\right)^{t}<\frac{1}{2}
$$

(Where we have chosen the $o(t)$ term in n appropriately so that the final inequality is correct.)

The random subset we chose earlier also clearly has at least n unique elements with probability at most $1 / 2$.

Thus by a union bound there is a colouring and choice of subset of V of size n with no monochromatic potential clique in this subset.

This completes the proof of the theorem.

Wigderson's Improvement

Theorem (Wigderson (2020))
For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.
G_{0} graph on V_{0} where $u v$ is an edge iff $u \cdot v=1$.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.
G_{0} graph on V_{0} where $u v$ is an edge iff $u \cdot v=1$.
Then by the results of Conlon and Ferber, G_{0} has no clique of size t and at most $2^{5 t^{2} / 8+o\left(t^{2}\right)}$ independent sets of size at most t.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.
G_{0} graph on V_{0} where $u v$ is an edge iff $u \cdot v=1$.
Then by the results of Conlon and Ferber, G_{0} has no clique of size t and at most $2^{5 t^{2} / 8+o\left(t^{2}\right)}$ independent sets of size at most t.

Randomly overlay $m=\ell-2$ blowups of G_{0} of size N colouring edges according to an arbitrary choice from the indicies of copies which include that edge.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.
G_{0} graph on V_{0} where $u v$ is an edge iff $u \cdot v=1$.
Then by the results of Conlon and Ferber, G_{0} has no clique of size t and at most $2^{5 t^{2} / 8+o\left(t^{2}\right)}$ independent sets of size at most t.

Randomly overlay $m=\ell-2$ blowups of G_{0} of size N colouring edges according to an arbitrary choice from the indicies of copies which include that edge.

We colour uncoloured edges uniformly at random with 2 additional colours.

Wigderson's Improvement

Theorem (Wigderson (2020))

For any fixed $\ell \geq 2, R(t ; \ell) \geq\left(2^{\frac{3 \ell}{8}-\frac{1}{4}}\right)^{t-o(t)}$.

The idea here is adapting the Conlon-Ferber construction from the case $q=2$.
If t is even define $V \subseteq \mathbb{F}_{2}^{t}$ to be the set of elements with even Hamming weight i.e., an even number of 1 's.
G_{0} graph on V_{0} where $u v$ is an edge iff $u \cdot v=1$.
Then by the results of Conlon and Ferber, G_{0} has no clique of size t and at most $2^{5 t^{2} / 8+o\left(t^{2}\right)}$ independent sets of size at most t.

Randomly overlay $m=\ell-2$ blowups of G_{0} of size N colouring edges according to an arbitrary choice from the indicies of copies which include that edge.

We colour uncoloured edges uniformly at random with 2 additional colours.
Arguing similarly to before we can deduce that provided N is sufficiently small, there are no monochromatic copies of K_{t}.

